Scientific American Supplement, No. 711 | Page 9

Not Available
800 h.p. each, there being but five hours of the day when all of them would be required. The fuel consumption per day, allowing 22 lb. of coal per h.p. per hour at $2.25 per ton, would make a total of $92.25 per diem for fuel, the coal being a mixture deliverable at the dock for about $1.80 per ton. The weight of coal used for the present locomotives is about the same, viz., 40 tons per day, but practice has shown it to be most economical to use coal of the best quality, costing $5 per ton, making the cost of fuel about double that required for the electric system. Without entering into other economies which the speaker claimed were in favor of electricity, and ignoring the plan suggested by Sir William Siemens of braking the train by converting the motor into a dynamo and thus utilizing the energy of momentum, he believed that the economy in fuel alone was sufficient to prove that the application of power by electricity was preferable to direct steam propulsion for the elevated railroad service.
* * * * *

MAGNETISM IN ITS RELATION TO INDUCED ELECTROMOTIVE FORCE AND CURRENT.[1]
[Footnote 1: A paper read before the American Institute of Electrical Engineers, New York, May 22, 1889.]
By ELIHU THOMSON.
There is perhaps no subject which at the present time can have a greater interest to the physicist, the electrician, and the electrical engineer than the one which heads this paper. The advances which have been made in the study from its purely theoretical or scientific side, and the great technical progress in the utilization of the known facts and principles concerning magnetic inductions, can but deepen and strengthen that interest.
On the side of pure theory we find the eager collection of experimental data to be submitted to the scrutiny of the ablest and brightest minds, to be examined and reasoned upon with the hope of finding some clew to satisfying explanations, and on the side of practice we find the search for new facts and relations no less diligent, though often stimulated by practical problems presented for solution. Indeed, the urgency for results is often the greater on the practical side, for theory can wait, practice cannot, at least in the United States.
We must look for continued triumphs in both directions, and the most welcome of all will be the framing of a theory or explanation which will enable us to interpret magnetic and electric phenomena. The recent beautiful experiments of Hertz on magnetic waves have opened a fertile region for investigation.
It would seem that the study of magnetism and electricity will give us the ability to investigate the ether of space, which medium has been theorized upon at great length, with the result of leaving it very much where it was before, a mysterious necessity.
Faraday says, speaking of magnetism:
"Such an action may be a function of the ether, for it is not at all unlikely that if there be an ether it should have other uses than simply the conveyance of radiations." 3,075. Vol. III., Exp. Res.
"It may be a vibration of the hypothetical ether, or a state of tension of that ether equivalent to either a dynamic or a static condition," etc. 3,263. Vol. III., Exp. Res.
Faraday again says, speaking of the magnetic power of a vacuum:
"What that surrounding magnetic medium deprived of all material substance may be I cannot tell, perhaps the ether." 3,277. Vol. III., Exp. Res.
Modern views would seem to point that through a study of magnetic phenomena we may take a feeble hold upon the universal ether. Magnetism is an action or condition of that medium, and it may be that electrical actions are the expression of molecular disturbances brought about by ether strains or interferences. The close relations which are shown to exist between magnetism and light tend to strengthen such views. Indeed, it would not be too much to expect that if the mechanics of the ether are ever worked out, we should find the relation between sensible heat and electric currents to be as close as that of light to magnetism, perhaps find ultimately the forms of matter, the elements and compounds to be the more complex manifestations of the universal medium--aggregations in stable equilibrium. It is a difficult conception, I confess, and a most shadowy and imperfect one, yet facts and inferences which favor such views are not wanting.
Our science of electricity seems almost to be in the same condition that chemistry was before the work of Lavoisier had shed its light on chemical theory. Our store of facts is daily increasing, and apparently disconnected phenomena are being brought into harmonious relation. Perhaps the edifice of complete theory will not be more than begun in our time, perhaps the building process will be a very gradual one,
Continue reading on your phone by scaning this QR Code

 / 54
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.