Scientific American Supplement, No. 561 | Page 6

Not Available
the boat in turn does more work on the water than does one propelled by a screw, because she has to take in thousands of tons per hour and impart to them a velocity equal to her own. Part of this work is got back again in a way sufficiently obvious, but not all. If it were all wasted, the efficiency of the hydraulic propeller would be so low that nothing would be heard about it, and we certainly should not have written this article.--_The Engineer._
* * * * *

THE NEW ARMY GUN.
The cut we give is from a photograph taken shortly after the recent firings. The carriage upon which it is mounted is the one designed by the Department and manufactured by the West Point Foundry, about six months since. It was designed as a proof carriage for this gun and also for the 10 inch steel gun in course of construction. It is adapted to the larger gun by introducing two steel bushing rings fitted into the cheeks of carriage to secure the trunnion of the gun.
The gun represented is an 8 inch, all steel, breech-loading rifle, manufactured by the West Point Foundry, upon designs from the Army Ordnance Bureau. The tube and jacket were obtained from Whitworth, and the hoops and the breech mechanism forgings from the Midvale Steel Company. The total weight of the gun is 13 tons; total length, including breech mechanism, 271 inches; length of bore in front of gas check, 30 calibers; powder space in chamber, 3,109 cubic inches; charge, 100 pounds. The tube extends back to breech recess from muzzle, in one solid piece. The breech block is carried in the jacket, the thread cut in the rear portion of the jacket. The jacket extends forward and is shrunk over the tube about 87? inches. The re-enforce is strengthened by two rows of steel hoops; the trunnion hoops form one of the outer layers. In front of the jacket a single row of hoops is shrunk on the tube and extends toward the muzzle, leaving 91 inches of the muzzle end of the tube unhooped. The second row of hoops is shrunk on forward of the trunnion hoops for a length of 38 inches to strengthen the gun, and the hoop portion forms three conical frustums. The elastic resistance of the gun to tangential rupture over the powder chamber is computed by Claverino and kindred formulas to be 54,000 lb. per square inch.
[Illustration: THE ARMY 8 INCH STEEL GUN WITH CARRIAGE.]
The breech mechanism is modeled after the De Bange system. The block has three smooth and three threaded sectors, and is locked in place by one-sixth of a turn of a block, and secured by the eccentric end of a heavy lever, which revolves into a cut made in the rear breech of the gun. The gas check consists of a pad made of two steel plates or cups, between which is a pad of asbestos and mutton suet formed under heavy pressure. The rifling consists of narrow grooves and bands, 45 of each. The depth of the groove is six one-hundredths of an inch.
Although the gun is designed for a charge of 100 pounds, it is believed that it can be increased to 105 pounds without giving dangerous pressure, and the intention is to increase the charge to that amount when the new powder is received from Du Pont.
The following is a very full synopsis of the official report of the preliminary firings--13 rounds--with this gun:
The first seven rounds were fired with German cocoa powder, which was received from Watervliet Arsenal. There were two kinds of cartridges, one kind weighing 85 pounds, and having 30 grains in each layer, the other weighing 100 lb., and having 27 grains in each layer. In two of the first seven rounds the weight of the charge was 65 pounds, the projectiles weighing 182 and 286 pounds; in the next two rounds charges of 85 pounds were fired, the projectiles, as before, weighing 182 and 286 pounds, while in the last three of the rounds fired with cocoa powder the charge was 100 lb., while the weight of the projectile was 182, 235, and 286 pounds. At the seventh round was fired the normal charge, 100 lb. of powder and a projectile weighing 286 pounds, for which the gun was designed. The mean pressure for this round, determined by two crusher gauges, was 32,800 pounds, and the velocity at 150 feet was 1,787 feet.
Two kinds of Du Pont's brown prismatic powder, marked P.A. and P.I., were then fired. With the normal charge of P.A. powder (round 12 of the record), the mean pressure was 35,450 pounds, the velocity at 150 feet was 1,812 feet. For P.I. powder (round 13 of the record), the pressure was
Continue reading on your phone by scaning this QR Code

 / 58
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.