Engineers are paid from $3 to $3.50 per day; ticket agents, $1.75 to $2.25; conductors, $1.90 to $2.50; firemen, $1.90 to $2; guards or brakemen, $1.50 to $1.65; and gatemen, $1.20 to $1.50. The above items do not include machinists and other employ��s in the workshops, or the general officers, clerks, etc.
* * * * *
AMERICAN ANTIMONY.
A Baltimore dispatch informs us that a carload of antimony, ten tons in all, was lately received by C.L. Oudesluys & Co., from the southern part of Utah Territory, being the first antimony received in the East from the mines of that section. The antimony was mined about 140 miles from Salt Lake City. The ore is a sulphide, bluish gray in color, and yields from 60 to 65 per cent. of antimony. All antimony heretofore came from Great Britain and the island of Borneo, and paid an import duty of 10 per cent. ad valorem, and there is also some from Sonora. It is believed that with proper rail facilities to the mines of the West there will be no need of importations.
* * * * *
SOME OF THE DEVELOPMENTS OF MECHANICAL ENGINEERING DURING THE LAST HALF-CENTURY.[1]
[Footnote 1: Paper read in Section G (Mechanical) of the British Association.]
By SIR FREDERICK BRAMWELL, V.P. Inst. C.E., F.R.S., Chairman of the Council of the Society of Arts.
I am quite sure the section will agree with me in thinking it was very fortunate for us, and for science generally, that our president refrained from occupying the time of the section by a retrospect, and devoted himself, in that lucid and clear address with which he favored us, to the consideration of certain scientific matters connected with engineering, and to the foreshadowing of the directions in which he believes it possible that further improvements may be sought for. But I think it is desirable that some one should give to this section a record, even although it must be but a brief and an imperfect one, of certain of the improvements that have been made, and of some of the progress that has taken place, during the last fifty years, in the practical application of mechanical science, with which science and its applications our section is particularly connected. I regret to say that, like most of the gentlemen who sat on this platform yesterday, who, I think, were, without exception, past presidents of the section, I am old enough to give this record from personal experience. Fifty years ago I had not the honor of being a member, nor should I, it is true, have been eligible for membership of the association; but I was at that time vigorously making models of steam-engines, to the great annoyance of the household in which I lived, and was looking forward to the day when I should be old enough to be apprenticed to an engineer. Without further preface, I will briefly allude to some of the principal developments of a few of the branches of engineering. I am well aware that many branches will be left unnoticed; but I trust that the omissions I may make will be remedied by those present who may speak upon the subject after me.
I will begin by alluding to
THE STEAM-ENGINE EMPLOYED FOR MANUFACTURING PURPOSES.
In 1831, the steam-engine for these purposes was commonly the condensing beam engine, and was supplied with steam from boilers, known, from their shape, as wagon boilers; this shape appears to have been chosen rather for the convenience of the sweeps, who periodically went through the flues to remove the soot consequent on the imperfect combustion, than for the purpose of withstanding any internal pressure of steam. The necessary consequence was, that the manufacturing engines of those days were compelled to work with steam of from only 3? lb. to 5 lb. per square inch of pressure above atmosphere. The piston speed rarely exceeded 250 feet per minute, and as a result of the feeble pressure, and of the low rate of speed, very large cylinders indeed were needed relatively to the power obtained. The consumption of fuel was heavy, being commonly from 7 lb. to 10 lb. per gross indicated horsepower per hour. The governing of the engine was done by pendulum governors, revolving slowly, and not calculated to exert any greater effort than that of raising the balls at the end of the pendulum arms, thus being, as will be readily seen, very inefficient regulators. The connection of the parts of the engine between themselves was derived from the foundation upon which the engine was supported. Incident to the low piston speed was slowness of revolution, rendering necessary heavy fly wheels, to obtain even an approach to practical uniformity of rotation, and frequently rendering necessary also heavy trains of toothed gearing, to bring up the speed from that of
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.