Its craters are numerous, and usually occur near the summit and on the sides, new ones opening frequently, and furnishing, as in the latest instance, magnificent lava streams. The terminal crater is circular, 8,000 feet in diameter, and in 1864 was about 1,000 feet deep. In 1859 an enormous lava fountain spouted from this crater for four or five days, throwing a column of white hot fluid lava about 200 feet in diameter to the height of two or three hundred feet. The lava stream ran 50 miles to the sea in eight days. Other great eruptions have occurred in 1832, 1840, 1843, 1852, 1855, 1868 and 1873. The lava streams poured out in 1840, 1859, and 1868, flowed to the sea, adding considerably to the area of the island. Those of 1843 and 1855 are estimated to have poured out respectively 17,000,000,000 and 38,000,000,000 cubic feet of lava. In 1868 the lava stream forced its way under ground a distance of twenty miles, and burst forth from a fissure two miles long, throwing up enormous columns of crimson lava and red hot rock to the height of five or six hundred feet.
On the eastern part of Mauna Loa, 16 miles from the summit crater, is Kilauea, the largest continuously active crater in the world. It is eight miles in circumference, and 1,000 feet deep. Its eruptions are generally independent of those of Mauna Loa.
* * * * *
NEW AIR ENGINE.
A valuable improvement in compressed air engines has recently been patented in this country and in Europe by Col. F. E. B. Beaumont, of the Royal Engineers, and we learn from accounts given in the London and provincial papers that it has proved highly efficient and satisfactory.
The engine possesses some peculiar features which render it very economical in the use of compressed air. It has two cylinders, one being much larger than the other. Into the smaller of these cylinders the compressed air is taken directly from the reservoir, and after doing its work there it is discharged into the larger cylinder, where it is further expanded, being finally discharged into the open air.
The admission of air to the smaller cylinder is regulated by an adjustable cut-off apparatus, which admits of maintaining a uniform power under a variable pressure. When the reservoir at first starting contains air at a very high pressure, the cut-off is adjusted so that the small cylinder receives a very small charge of air at each stroke; when the pressure in the reservoir diminishes the cut-off is delayed so that a larger quantity of air is admitted to the small cylinder; and when the pressure in the reservoir is so far reduced that the pressure on the smaller piston gives very little power, the supply passages are kept open so that the air acts directly on the piston of the larger cylinder. This arrangement is also available when the air pressure is high and great power is required for a short time, as, for example, in starting a locomotive.
It is, perhaps, needless to mention the advantages a motor of this kind possesses over the steam locomotive. The absence of smoke and noise renders it particularly desirable for tunnels, elevated roads, and, in fact, for any city railroad.
Further information in regard to this important invention may be obtained by addressing Mr. R. Ten Broeck, at the Windsor Hotel, New York.
* * * * *
TELEGRAPH WIRES UNDERGROUND.
Philadelphia newspapers report that the American Union Telegraph Company are about to try in that city the experiment of putting their wires underground. The plan works well enough in European cities, and there would seem to be no reason why it should not succeed here, save the indisposition of the companies to bear the first cost of making the change. For some months the Western Union Telegraph Company has had the matter under consideration, but will probably wait until pressed by a rival company before it undertakes the more serious task of taking down its forest of poles and sinking the wires which contribute so much to the prevailing ugliness of our streets. Sooner or later the poles and wires must come down; and it is altogether probable that the change will be beneficial to the companies in the long run, owing to the smaller cost of maintaining a subterranean system. It will certainly be an advantage to the community.
* * * * *
IMPROVED SAFETY NUT.
That a safety nut so simple and so obviously efficient as the one shown in the annexed engraving should be among the recent inventions in this line instead of being among the first, is a curious example of the manner in which inventors often overlook the simplest means of accomplishing an end. The principle on which this nut operates will be understood by reference to the engraving.
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.