Science and Education | Page 5

Thomas Henry Huxley
priest and bishop. While thus engaged, the kindly, cheerful doctor felt no more wrath or uncharitableness towards his opponents than a smith does towards his iron. But if the iron could only speak!--and the priests and bishops took the point of view of the iron.
No doubt what Priestley's friends repeatedly urged upon him--that he would have escaped the heavier trials of his life and done more for the advancement of knowledge, if he had confined himself to his scientific pursuits and let his fellow-men go their way--was true. But it seems to have been Priestley's feeling that he was a man and a citizen before he was a philosopher, and that the duties of the two former positions are at least as imperative as those of the latter. Moreover, there are men (and I think Priestley was one of them) to whom the satisfaction of throwing down a triumphant fallacy is as great as that which attends the discovery of a new truth; who feel better satisfied with the government of the world, when they have been helping Providence by knocking an imposture on the head; and who care even more for freedom of thought than for mere advance of knowledge. These men are the Carnots who organise victory for truth, and they are, at least, as important as the generals who visibly fight her battles in the field.
Priestley's reputation as a man of science rests upon his numerous and important contributions to the chemistry of gaseous bodies; and to form a just estimate of the value of his work--of the extent to which it advanced the knowledge of fact and the development of sound theoretical views--we must reflect what chemistry was in the first half of the eighteenth century.
The vast science which now passes under that name had no existence. Air, water, and fire were still counted among the elemental bodies; and though Van Helmont, a century before, had distinguished different kinds of air as gas ventosum and gas sylvestre, and Boyle and Hales had experimentally defined the physical properties of air, and discriminated some of the various kinds of a?riform bodies, no one suspected the existence of the numerous totally distinct gaseous elements which are now known, or dreamed that the air we breathe and the water we drink are compounds of gaseous elements.
But, in 1754, a young Scotch physician, Dr. Black, made the first clearing in this tangled backwood of knowledge. And it gives one a wonderful impression of the juvenility of scientific chemistry to think that Lord Brougham, whom so many of us recollect, attended Black's lectures when he was a student in Edinburgh. Black's researches gave the world the novel and startling conception of a gas that was a permanently elastic fluid like air, but that differed from common air in being much heavier, very poisonous, and in having the properties of an acid, capable of neutralising the strongest alkalies; and it took the world some time to become accustomed to the notion.
A dozen years later, one of the most sagacious and accurate investigators who has adorned this, or any other, country, Henry Cavendish, published a memoir in the "Philosophical Transactions," in which he deals not only with the "fixed air" (now called carbonic acid or carbonic anhydride) of Black, but with "inflammable air," or what we now term hydrogen.
By the rigorous application of weight and measure to all his processes, Cavendish implied the belief subsequently formulated by Lavoisier, that, in chemical processes, matter is neither created nor destroyed, and indicated the path along which all future explorers must travel. Nor did he himself halt until this path led him, in 1784, to the brilliant and fundamental discovery that water is composed of two gases united in fixed and constant proportions.
It is a trying ordeal for any man to be compared with Black and Cavendish, and Priestley cannot be said to stand on their level. Nevertheless his achievements are not only great in themselves, but truly wonderful, if we consider the disadvantages under which he laboured. Without the careful scientific training of Black, without the leisure and appliances secured by the wealth of Cavendish, he scaled the walls of science as so many Englishmen have done before and since his day; and trusting to mother wit to supply the place of training, and to ingenuity to create apparatus out of washing tubs, he discovered more new gases than all his predecessors put together had done. He laid the foundations of gas analysis; he discovered the complementary actions of animal and vegetable life upon the constituents of the atmosphere; and, finally, he crowned his work, this day one hundred years ago, by the discovery of that "pure dephlogisticated air" to which the French chemists subsequently gave the name of oxygen. Its importance, as the constituent of
Continue reading on your phone by scaning this QR Code

 / 138
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.