Response in the Living and Non-Living | Page 9

Jagadis Chunder Bose
to be read from right to left.]
#Response recorder.#--The galvanometer used is a sensitive dead-beat D'Arsonval. The period of complete swing of the coil under experimental conditions is about 11?seconds. A current of 10^{-9}?ampere produces a deflection of 1?mm. at a distance of 1?metre. For a quick and accurate method of obtaining the records, I devised the following form of response recorder. The curves are obtained directly, by tracing the excursion of the galvanometer spot of light on a revolving drum (fig.?8). The drum, on which is wrapped the paper for receiving the record, is driven by clockwork. Different speeds of revolution can be given to it by adjustment of the clock-governor, or by changing the size of the driving-wheel. The galvanometer spot is thrown down on the drum by the inclined mirror M. The galvanometer deflection takes place at right angles to the motion of the paper. A stylographic pen attached to a carrier rests on the writing surface. The carrier slides over a rod parallel to the drum. As has been said before, the galvanometer deflection takes place parallel to the drum, and as long as the plant rests unstimulated, the pen, remaining coincident with the stationary galvanometer spot on the revolving paper, describes a straight line. If, on stimulation, we trace the resulting excursion of the spot of light, by moving the carrier which holds the pen, the rising portion of the response-curve will be obtained. The galvanometer spot will then return more or less gradually to its original position, and that part of the curve which is traced during the process constitutes the recovery. The ordinate in these curves represents the E.M. variation, and the abscissa the time.
[Illustration: FIG.?8.--RESPONSE RECORDER]
We can calibrate the value of the deflection by applying a known E.M.F. to the circuit from a compensator, and noting the deflection which results. The speed of the clock is previously adjusted so that the recording surface moves exactly through, say, one inch a minute. Of course this speed can be increased to suit the particular experiment, and in some it is as high as six inches a minute. In this simple manner very accurate records may be made. It has the additional advantage that one is able at once to see whether the specimen is suitable for the purpose of investigation. A large number of records might be taken by this means in a comparatively short time.
#Photographic recorder.#--Or the records may be made photographically. A clockwork arrangement moves a photographic plate at a known uniform rate, and a curve is traced on the plate by the moving spot of light. All the records that will be given are accurate reproductions of those obtained by one of these two methods. Photographic records are reproduced in white against a black background.
#Compensator.#--As the responses are on variation of current of injury, and as the current of injury may be strong, and throw the spot of light beyond the recording surface, a potentiometer balancing arrangement may be used (fig.?9), by which the P.D. due to injury is exactly compensated; E.M. variations produced by stimulus are then taken in the usual manner. This compensating arrangement is also helpful, as has been said before, for calibrating the E.M. value of the deflection.
[Illustration: FIG.?9.--THE COMPENSATOR A?B is a stretched wire with added resistances R and R'. S is a storage cell. When the key K is turned to the right one scale division = ·001?volt, when turned to the left one scale division = ·01?volt. P is the plant.]
#Means of graduating the intensity of stimulus.#--One of the necessities in connection with quantitative measurements is to be certain that the intensity of successive stimuli is (1) constant, or (2) capable of gradual increase by known amounts. No two taps given by the hand can be made exactly alike. I have therefore devised the two following methods of stimulation, which have been found to act satisfactorily.
[Illustration: FIG.?10.--THE SPRING-TAPPER]
#The spring-tapper.#--This consists (fig.?10) of the spring proper (S), the attached rod (R) carrying at its end the tapping-head (T). A projecting rod--the lifter (L)--passes through S?R. It is provided with a screw-thread, by means of which its length, projecting downwards, is regulated. This fact, as we shall see, is made to determine the height of the stroke. (C) is a cogwheel. As one of the spokes of the cogwheel is rotated past (L), the spring is lifted and released, and (T) delivers a sharp tap. The height of the lift, and therefore the intensity of the stroke, is measured by means of a graduated scale. We can increase the intensity of the stroke through a wide range (1) by increasing the projecting length of the lifter, and (2) by shortening the length of spring by a sliding catch. We may give isolated single taps or superpose a
Continue reading on your phone by scaning this QR Code

 / 57
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.