Pressure, Resistance, and Stability of Earth | Page 6

J. C. Meem
as water under static conditions, it being understood that any material may be unstable under the influence of water at sufficiently high velocities, and that it is with a static condition, or one approximately so, that this paper deals.
A clear understanding of the firm materials noted in Class A will lead to a better solution of problems dealing with those under Class B, as it is to this Class A that the experiments largely relate.
The experiments noted below were made with varying material, though the principal type used was a fine sand, under the conditions in which it is ordinarily found in excavations, with less than 40% voids and less than 10% of very fine material.
[Illustration: FIG. 7.]
_Experiment No. 2._--The first of these experiments, which in this series will be called No. 2, was simple, and was made in order to show that this material does not flow readily under ordinary conditions, when not coupled with the discharge of water under high velocity. A bucket 12 in. in diameter, containing another bucket 9 in. in diameter, was used. A 6 by 6-in. hole was cut in the bottom of the inner bucket. About 3 in. of sand was first placed in the bottom of the larger bucket and it was partly filled with water. The inside bucket was then given a false bottom and partly filled with wet sand, resting on the sand in the larger bucket. Both were filled with water, and the weight, W, Fig. 7, on the arm was shifted until it balanced the weight of the inside bucket in the water, the distance of the weight, W, from the pivot being noted. The false bottom was then removed and the inside bucket, resting on the sand in the larger one, was partly filled with sand and both were filled with water, the conditions at the point of weighing being exactly the same, except that the false bottom was removed, leaving the sand in contact through the 6 by 6-in. opening. It is readily seen that, if the sand had possessed the aqueous properties sometimes attributed to sand under water, that in the inside bucket would have flowed out through the square hole in the bottom, allowing it to be lifted by any weight in excess of the actual weight of the bucket, less its buoyancy, as would be the case if it contained only water instead of sand and water. It was found, however, that the weight, resting at a distance of more than nine-tenths of the original distance from the pivot, would not raise the inside bucket. On lifting this inside bucket bodily, however, the water at once forced the sand out through the bottom, leaving a hole almost exactly the shape and size of the bottom orifice, as shown in Fig. 1, Plate XXVII. It should be stated that, in each case, the sand was put in in small handfuls and thoroughly mixed with water, but not packed, and allowed to stand for some time before the experiments were tried, to insure the compactness of ordinary conditions. It is seen from Fig. 1, Plate XXVII, that the sand was stable enough to allow the bucket to be put on its side for the moment of being photographed, although it had been pulled out of the water a little less than 3 min.
[Illustration: PLATE XXVI, FIG. 1.--TYPES OF ARCH TIMBERS USED IN BAY RIDGE TUNNEL SEWER.]
[Illustration: PLATE XXVI, FIG. 2.--NORMAL SLOPE OF LOOSE SAND, GRAVEL, AND CEMENTED GRAVEL, IN CLOSE PROXIMITY.]
_Experiment No. 3._--In order to show that the arching properties of sand are not destroyed under subaqueous conditions, a small sand-box, having a capacity of about 1 cu. ft., and similar to that described in Experiment No. 1, was made. The bottom was cut out, with the exception of a ?-in. projection on two sides, and a false bottom was placed below and outside of the original bottom, with bolts running through it, keying to washers on top of the sand, with which the box was partly filled. One side of the box contained a glass front, in order that conditions of saturation could be observed. The box of sand was then filled with water and, after saturation had been completed and the nuts and washers had been tightened down, the box was lifted off the floor. There was found to be no tendency whatever for the bottom to fall away, showing conclusively that the arching properties had not been destroyed by the saturation of the sand.
The next three experiments were intended to show the relative pressure over any given area in contact with the water in the one case or sand and water in the other.
[Illustration: FIG. 8.]
_Experiment No. 4._--The apparatus for this experiment consisted of a 3-in. pipe about 4-in. long and connected
Continue reading on your phone by scaning this QR Code

 / 37
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.