have had if the sand had been in place underground; the cap was then set in place and, after an hour, the pump was started. The pressure registered was 25 lb. and extended over a period of several seconds before there was any movement in the piston. The piston responded finally without any increase of pressure, and, after lifting an inch or two, the pressure gradually dropped to 10 lb., where it remained until the piston came out of the sand.
The sum and average of these tests shows a relation of 22 lb. for the piston in sand to about 8? lb. as soon as the volume of water had accumulated below it, which would correspond very closely to a sand containing 40% of voids, which was the characteristic of the sand used in this experiment.
The conclusions from this experiment appear to be absolutely final in illustrating the pressure due to water on a tunnel buried in sand, either on the arch above or on the sides or bottom, as well as the buoyant effect upon the tunnel bottom under the same conditions.
While the apparatus would have to be designed and built on a much larger scale in order to measure accurately the pressures due to sands and earths of varying characteristics, it appears to be conclusive in showing the principle, and near enough to the theoretical value to be taken for practical purposes in designing structures against water pressures when buried in sand or earth.
It should be carefully noted that the friction of the water through sand, which is always a large factor in subaqueous construction, is virtually eliminated here, as the water pressure has to be transmitted only some 6 or 8 in. to actuate the base of the piston, whereas in a tunnel only half submerged this distance might be as many feet, and would be a considerable factor.
It should be noted also that although the area subject to pressure is diminished, the pressure on the area remaining corresponds to the full hydrostatic head, as would be shown by the pressure on an air gauge required to hold back the water, except, of course, as it may be diminished more or less by friction.
The writer understands that experiments of a similar nature and with similar apparatus have been tried on clays and peats with results considerably higher; that is, in one case, there was a pressure of 40 lb. before the piston started to move.
The following is given, in part, as an analysis and explanation of the above experiments and notes:
It is well known that if lead be placed in a hydraulic press and subjected to a sufficient pressure it will exhibit properties somewhat similar to soft clay or quicksand under pressure. It will flow out of an orifice or more than one orifice at the same pressure. This is due to the fact that practically voids do not exist and that the pressure is so great, compared with the molecular cohesion, that the latter is virtually nullified. It is also theoretically true that solid stone under infinitely high pressure may be liquefied. If in the cylinder of a hydraulic press there be put a certain quantity of cobblestones, leaving a clearance between the top of the stone and the piston, and if this space, together with the voids, be filled with water and subjected to a great pressure, the sides or the walls of the cylinder are acted on by two pressures, one almost negligible, where they are in contact with the stone, restraining the tendency of the stone to roll or slide outward, and the other due to the pressure of the water over the area against which there is no contact of stone. That this area of contact should be deducted from the pressure area can be clearly shown by assuming another cylinder with cross-sticks jammed into it, as shown in Fig. 10. A glance at this figure will show that there is no aqueous pressure on the walls of the cylinder with which the ends of the sticks come in contact and the loss of the pressure against the walls due to this is equal to the least sectional area of the stick or tube either at the point of contact or intermediate thereto.
Following this reasoning, in Fig. 11 it is found that an equivalent area may be deducted covering the least area of continuous contact of the cobblestones, as shown along the dotted lines in the right half of the figure. Returning, if, when the pressure is applied, an orifice be made in the cylinder, the water will at once flow out under pressure, allowing the piston to come in contact with the cobblestones. If the flow of the water were controlled, so as to stop it at the point where the
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.