Pressure, Resistance, and Stability of Earth | Page 4

J. C. Meem
the 14?-ft. circular sewer and 19? ft. for the 15-ft. sewer. The arch timber segments in the cross-section were 10 by 12-in. North Carolina pine of good grade, with 2 in. off the butt for a bearing to take up the thrust. They were set 5 ft. apart on centers, and rested on 6 by 12-in. wall-plates of the same material as noted above. The ultimate strength of this material, across the grain, when dry and in good condition, as given by the United States Forestry Department tests is about 1,000 lb. in compression. Some tests[C] made in 1907 by Mr. E.F. Sherman for the Charles River Dam in Boston, Mass., show that in yellow pine, which had been water-soaked for two years, checks began to open at from 388 to 581 lb. per sq. in., and that yields of ? in. were noted at from 600 to 1,000 lb. As the tunnel wall-plates described in this paper were subject to occasional saturation, and always to a moist atmosphere, they could never have been considered as equal to dry material. Had the full loading shown by the foregoing come on these wall-plates, they would have been subjected to a stress of about 25 tons each, or nearly one-half of their ultimate strength. In only one or two instances, covering stretches of 100 ft. in one case and 200 ft. in another, where there were large areas of quicksand sufficient to cause semi-aqueous pressure, or pockets of the same material causing eccentric loading, did these wall-plates show any signs of heavy pressure, and in many instances they were in such good condition that they could be taken out and used a second and a third time. Two especially interesting instances came under the writer's observation: In one case, due to a collapse of the internal bracing, the load of an entire section, 25 ft. long and 19 ft. wide, was carried for several hours on ribs spaced 5 ft. apart. The minimum cross-section of these ribs was 73 sq. in., and they were under a stress, as noted above, of 50,000 lb., or nearly up to the actual limit of strength of the wall-plate where the rib bore on it. When these wall-plates were examined, after replacing the internal bracing, they did not appear to have been under any unusual stress.
[Illustration: PLATE XXV, FIG. 1.--NORMAL SLOPES AND STRATA OF NEWLY EXCAVATED BANKS.]
[Illustration: PLATE XXV, FIG. 2.--NORMAL SLOPES AND STRATA OF NEWLY EXCAVATED BANKS.]
In another instance, for a distance of more than 700 ft., the sub-grade of the sewer was 4 ft. below the level of the water in sharp sand. In excavating for "bottoms" the water had to be pumped at the rate of more than 300 gal. per min., and it was necessary to close-sheet a trench between the wall-plates in which to place a section of "bottom." In spite of the utmost care, some ground was necessarily lost, and this was shown by the slight subsidence of the wall-plates and a loosening up of the wedges in the supports bearing on the arch timbers. During this operation of "bottoming," two men on each side were constantly employed in tightening up wedges and shims above the arch timbers. It is impossible to explain the fact that these timbers slackened (without proportionate roof settlement) by any other theory than that the arching was so nearly perfect that it relieved the bracing of a large part of the load, the ordinary loose material being held in place by the arching or wedging together of the 2-in. by 3-ft. sheeting boards in the roof, arranged in the form of a segmental arch. The material above this roof was coarse, sharp sand, through which it had been difficult to tunnel without losing ground, and it had admitted water freely after each rain until the drainage of a neighboring pond had been completed, the men never being willing to resume work until the influx of water had stopped.
The foregoing applies only to material ordinarily found under ground not subaqueous, or which cannot be classed as aqueous or semi-aqueous material. These conditions will be noted later.
[Illustration: FIG. 5.]
[Illustration: FIG. 6.]
The writer will take up next the question of pressures against the faces of sheeted trenches or retaining walls, in material of the same character as noted above. Referring to Fig. 2, it is not reasonable to suppose that having passed the line, R F J, the character of the stresses due to the thrust of the material will change, if bracing should be substituted for the material in the area, W V J R, or if, as in Fig. 3, canvas is rolled down along the lines, E G and A O, and if, as this section is excavated between the canvas faces, temporary struts are
Continue reading on your phone by scaning this QR Code

 / 37
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.