Outlines of a Mechanical Theory of Storms | Page 9

T. Bassnett
1.0000 �� .252 = .252 Oxygen, 1.1111 �� .227 = .252 Nitrogen, 0.9722 �� .260 = .252 Hydrogen, 0.0745 �� 3.350 = .249
As might be expected, there is a greater discrepancy in the case of hydrogen.
If we test the principle by the vapor of water, we must consider that it is composed of two volumes of hydrogen and one volume of oxygen, and that one volume disappears; or that one-third of the whole atomic motion is consumed by the interference of the vibrations of the ether, necessary to unite the atoms, and form an atom of water. We must therefore form this product from its specific gravity and two-thirds of its specific heat. On no one subject in chemistry has there been so much labor expended, as in determining the specific heat of watery vapor. In relation to this, Regnault observes: "It is important to remark that an immense number of experiments have been made, to find the specific heat of steam, and that it is about one-half of what it was thought to be." He gives its value .475; but this is vitiated still, by the non-recognition of the specific heat of the ether. Former experiments give .847. Perhaps Regnault's numbers are entitled to the most weight. Instead of taking the mean, therefore, we will give double weight to his results; so that we get .600 for the specific heat of vapor, and as its specific gravity is .625, the product .400 �� .625 is .250, the same as for hydrogen. Little importance, however, should be attached to such coincidences, owing to the uncertainty of the numbers. If our position be correct, the specific heat of hydrogen should be 10 times greater than of oxygen. The atomic weights are as 1 to 8, while their volumes are as 2 to 1; therefore, for equal spaces, the matter is as 1 to 16. Calling the specific heat 10 to 1, and taking the amount due to half the space, the product becomes as 8 to 16; but in the rarer gas there is 8?times as much ethereal momentum or matter, which, added to the atomic matter, renders the spaces equal.[3] Regnault's results give a ratio of specific heats?= 1 to 3.405/.215?= 1 to 15.6.
THE GOLDEN MEAN.
The history of science proves how few have practically respected the adage of the ancients, which we have chosen for our motto; words which ought to be written in letters of gold in every language under the sun. Descartes, by considering the mechanical impulse of the ether sufficient to explain the planetary motions, failed to detect the force of gravity in the heavens. Newton, on the other hand, feeling that his law was sufficient to explain them, and requiring a vacuum for its mathematical accuracy, rejected the notion of an ethereal medium. His successors, following too closely in his footsteps, and forgetting the golden law, have forced themselves into a position by no means enviable. The short-period comet has driven them to a resisting medium, which, while according to Encke's hypothesis of increasing density around the sun, it explains the anomalies of one periodical comet, requires a different law of density for another, and a negative resistance for a third.
OUTLINES OF THE PROBLEM.
From the position we now occupy, we can see the outlines of the problem before us, viz.: To reconcile the existence of an ethereal medium with the law of gravitation, and to show the harmony between them. We shall thus occupy the middle ground, and endeavor to be just to the genius of Descartes, without detracting from the glory of Newton, by demonstrating the reality of the Cartesian vortices, and by showing that the ether is not affected by gravitation, but on the other hand is least dense in the centre of our system. But what (it may be asked) has this to do with the theory of storms? Much every way. And we may so far anticipate our subject as to assert that every phenomenon in meteorology where force is concerned, is dependent on the motions of the great sea of electric fluid which surrounds us, in connection with its great specific, caloric. If we are chargeable with overweening pretensions, let it be attributed to the fact that for the last fifteen years we have treated the weather as an astronomical phenomenon, calculated by simple formul?, and that the evidence of its truth has been almost daily presented to us, so as to render it by this time one of the most familiar and palpable of all the great fundamental laws of nature. True, we have neither had means nor leisure to render the theory as perfect as we might have done, the reason of which we have already communicated.
MOTIONS OF THE STARS.
In investigating the question now before us, we shall first
Continue reading on your phone by scaning this QR Code

 / 99
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.