on the steam bath for four hours, cooled and filtered with suction to remove most of the sodium chloride. It is well to wash the filtered salt with a small portion of alcohol in order to remove any benzyl cyanide which may have been mechanically held. The flask is now fitted with a condenser, and as much alcohol as possible is distilled off on the steam bath. The residual liquid is cooled, filtered if necessary, and the layer of benzyl cyanide separated. This crude benzyl cyanide is now placed in a Claisen distilling flask and distilled in vacuo, the water and alcohol coming over first, and finally the cyanide. It is advantageous to use a fractionating column or, better still, a Claisen flask with a modified side-arm[1] (Vol. I, p. 40, Fig. 3) which gives the same effect as a fractionating column. The material is collected from 135-140'0/38 mm. (115-120'0/10 mm.). The yield is 740-830 g. (80-90 per cent of the theoretical amount).
[1] J. Am. Chem. Soc. 39, 2718 (1917). 2. Notes
The quality of the benzyl chloride markedly affects the yield of pure benzyl cyanide. If a poor technical grade is used, the yields will not be more than 60-75 per cent of the theoretical, whereas consistent results of about 85 per cent or more were always obtained when a product was used that boiled over 10'0. The technical benzyl chloride at hand yielded on distillation about 8 per cent of high-boiling material; a technical grade from another source was of unusual purity and boiled over a 2'0 range for the most part.
It is advisable to distil off the last portion of alcohol and water in vacuo and also to distil the benzyl cyanide in vacuo, since under ordinary pressures a white solid invariably separates during the distillation.
One method of purifying the benzyl cyanide is to steam distil it after the alcohol has been first distilled from the reaction mixture. At ordinary pressures, this steam distillation is very slow and, with an ordinary condenser, requires eighteen to twenty hours in order to remove all of the volatile product from a run of 500 g. of benzyl chloride. The distillate separates into two layers; the benzyl cyanide layer is removed and distilled. The product obtained in this way is very pure and contains no tarry material, and, after the excess of benzyl chloride has been removed, boils practically constant. This steam distillation is hardly advisable in the laboratory.
The benzyl cyanide, prepared according to the procedure as outlined, is collected over a 5'0 range. It varies in appearance from a colorless to a straw-colored liquid and often develops appreciable color upon standing. For a product of special purity, it should be redistilled under diminished pressure and collected over a 1-2'0 range. For most purposes, such as the preparation of phenylacetic acid or ester, the fraction boiling 135-140'0/38 mm. is perfectly satisfactory. 3. Other Methods of Preparation
Benzyl cyanide occurs naturally in certain oils.[1] The only feasible method of preparing it that has been described in the literature is the one in which alcoholic potassium cyanide and benzyl chloride[2] are employed. The cheaper sodium cyanide is just as satisfactory as the potassium cyanide and therefore is the best material to use. Gomberg has recently prepared benzyl cyanide from benzyl chloride and an aqueous solution of sodium cyanide.[3]
[1] Ber. 7, 519, 1293 (1874); 32, 2337 (1899)
[2] Ann. 96, 247 (1855); Ber. 3, 198 (1870); 14, 1645 (1881); 19, 1950 (1886).
[3] J. Am. Chem. Soc. 42, 2059 (1920).
IV
a, g-DICHLOROACETONE
CH2ClCHOHCH2Cl + O(Na2Cr2O7 + H2SO4)--> CH2ClCOCH2Cl + H2O
Prepared by J. B. CONANT and O. R. QUAYLE. Checked by A. W. DOX, L. YODER, and O. KAMM.
1. Procedure
IN a 2-l. flask are placed 375 g. of commercial sodium dichromate, 225 cc. of water, and 300 g. of dichlorohydrin (b. p. 68-75'0/14 mm.). The flask is set in a water bath and equipped with a thermometer and mechanical stirrer. The contents are vigorously stirred, and 450 g. of sulfuric acid, diluted with 115 g. of water, are introduced during the course of seven to eight hours. It is convenient to add the acid at ten-minute intervals. The temperature is kept between 20'0 and 25'0 during the entire reaction; this is accomplished by adding a little ice to the water bath from time to time. The stirring is continued for sixteen to seventeen hours after all the acid has been added; as there is very little heat evolved during this part of the reaction, the water bath may be allowed to come to room temperature.
Sufficient water is now added to the mixture to dissolve the pasty chromium salts (300-800 cc.). The mass of crystals is then rapidly filtered on a Buchner funnel and sucked as dry as possible. The crystals are then transferred to a small laboratory centrifuge and centrifuged for
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.