biology to the interpretation of the animal and vegetable remains imbedded in the rocks which compose the surface of the globe, which is called Palaeontology.
At no very distant time, the question whether these so-called "fossils," were really the remains of animals and plants was hotly disputed. Very learned persons maintained that they were nothing of the kind, but a sort of concretion, or crystallisation, which had taken place within the stone in which they are found; and which simulated the forms of animal and vegetable life, just as frost on a window-pane imitates vegetation. At the present day, it would probably be impossible to find any sane advocate of this opinion; and the fact is rather surprising, that among the people from whom the circle- squarers, perpetual-motioners, flat-earthed men and the like, are recruited, to say nothing of table-turners and spirit- rappers, somebody has not perceived the easy avenue to nonsensical notoriety open to any one who will take up the good old doctrine, that fossils are all lusus naturae.
The position would be impregnable, inasmuch as it is quite impossible to prove the contrary. If a man choose to maintain that a fossil oyster shell, in spite of its correspondence, down to every minutest particular, with that of an oyster fresh taken out of the sea, was never tenanted by a living oyster, but is a mineral concretion, there is no demonstrating his error. All that can be done is to show him that, by a parity of reasoning, he is bound to admit that a heap of oyster shells outside a fishmonger's door may also be "sports of nature," and that a mutton bone in a dust-bin may have had the like origin. And when you cannot prove that people are wrong, but only that they are absurd, the best course is to let them alone.
The whole fabric of palaeontology, in fact, falls to the ground unless we admit the validity of Zadig's great principle, that like effects imply like causes, and that the process of reasoning from a shell, or a tooth, or a bone, to the nature of the animal to which it belonged, rests absolutely on the assumption that the likeness of this shell, or tooth, or bone, to that of some animal with which we are already acquainted, is such that we are justified in inferring a corresponding degree of likeness in the rest of the two organisms. It is on this very simple principle, and not upon imaginary laws of physiological correlation, about which, in most cases, we know nothing whatever, that the so-called restorations of the palaeontologist are based.
Abundant illustrations of this truth will occur to every one who is familiar with palaeontology; none is more suitable than the case of the so-called Belemnites. In the early days of the study of fossils, this name was given to certain elongated stony bodies, ending at one extremity in a conical point, and truncated at the other, which were commonly reputed to be thunderbolts, and as such to have descended from the sky. They are common enough in some parts of England; and, in the condition in which they are ordinarily found, it might be difficult to give satisfactory reasons for denying them to be merely mineral bodies.
They appear, in fact, to consist of nothing but concentric layers of carbonate of lime, disposed in subcrystalline fibres, or prisms, perpendicular to the layers. Among a great number of specimens of these Belemnites, however, it was soon observed that some showed a conical cavity at the blunt end; and, in still better preserved specimens, this cavity appeared to be divided into chambers by delicate saucer-shaped partitions, situated at regular intervals one above the other. Now there is no mineral body which presents any structure comparable to this, and the conclusion suggested itself that the Belemnites must be the effects of causes other than those which are at work in inorganic nature. On close examination, the saucer-shaped partitions were proved to be all perforated at one point, and the perforations being situated exactly in the same line, the chambers were seen to be traversed by a canal, or siphuncle, which thus connected the smallest or aphical chamber with the largest. There is nothing like this in the vegetable world; but an exactly corresponding structure is met with in the shells of two kinds of existing animals, the pearly Nautilus and the Spirula, and only in them. These animals belong to the same division--the Cephalopoda--as the cuttle-fish, the squid, and the octopus. But they are the only existing members of the group which possess chambered, siphunculated shells; and it is utterly impossible to trace any physiological connection between the very peculiar structural characters of a cephalopod and the presence of a chambered shell. In fact, the squid has, instead
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.