point, and is changed in character by its passage; further, force rushes through every spiral and every spirilla, and the changing shades of colour that flash out from the rapidly revolving and vibrating atom depend on the several activities of the spirals; sometimes one, sometimes another, is thrown into more energetic action, and with the change of activity from one spiral to another the colour changes.
The building of a gaseous atom of hydrogen may be traced downward from E 1, and, as stated above, the lines given in the diagram are intended to indicate the play of the forces which bring about the several combinations. Speaking generally, positive bodies are marked by their contained atoms setting their points towards each other and the centre of their combination, and repelling each other outwards; negative bodies are marked by the heart-shaped depressions being turned inwards, and by a tendency to move towards each other instead of away. Every combination begins by a welling up of force at a centre, which is to form the centre of the combination; in the first positive hydrogen combination, E 2, an atom revolving at right angles to the plane of the paper and also revolving on its own axis, forms the centre, and force, rushing out at its lower point, rushes in at the depressions of two other atoms, which then set themselves with their points to the centre; the lines are shown in +b, right-hand figure. (The left-hand figure indicates the revolution of the atoms each by itself.) As this atomic triad whirls round, it clears itself a space, pressing back the undifferentiated matter of the plane, and making to itself a whirling wall of this matter, thus taking the first step towards building up the chemical hydrogen atom. A negative atomic triad is similarly formed, the three atoms being symmetrically arranged round the centre of out-welling force. These atomic triads then combine, two of the linear arrangement being attracted to each other, and two of the triangular, force again welling up and forming a centre and acting on the triads as on a single atom, and a limiting wall being again formed as the combination revolves round its centre. The next stage is produced by each of these combinations on E 3 attracting to itself a third atomic triad of the triangular type from E 2, by the setting up of a new centre of up-welling force, following the lines traced in the combinations of E 4. Two of these uniting, and their triangles interpenetrating, the chemical atom is formed, and we find it to contain in all eighteen ultimate physical atoms.
The next substance investigated was oxygen, a far more complicated and puzzling body; the difficulties of observation were very much increased by the extraordinary activity shown by this element and the dazzling brilliancy of some of its constituents. The gaseous atom is an ovoid body, within which a spirally-coiled snake-like body revolves at a high velocity, five brilliant points of light shining on the coils. The snake appears to be a solid rounded body, but on raising the atom to E 4 the snake splits lengthwise into two waved bodies, and it is seen that the appearance of solidity is due to the fact that these spin round a common axis in opposite directions, and so present a continuous surface, as a ring of fire can be made by whirling a lighted stick. The brilliant bodies seen in the atom are on the crests of the waves in the positive snake, and in the hollows in the negative one; the snake itself consists of small bead-like bodies, eleven of which interpose between the larger brilliant spots. On raising these bodies to E 3 the snakes break up, each bright spot carrying with it six beads on one side and five on the other; these twist and writhe about still with the same extraordinary activity, reminding one of fire-flies stimulated to wild gyrations. It can been seen that the larger brilliant bodies each enclose seven ultimate atoms, while the beads each enclose two. (Each bright spot with its eleven beads is enclosed in a wall, accidentally omitted in the diagram.) On the next stage, E 2, the fragments of the snakes break up into their constituent parts; the positive and negative bodies, marked d and _d'_, showing a difference of arrangement of the atoms contained in them. These again finally disintegrate, setting free the ultimate physical atoms, identical with those obtained from hydrogen. The number of ultimate atoms contained in the gaseous atom of oxygen is 290, made up as follows:--
2 in each bead, of which there are 110: 7 in each bright spot, of which there are 10; 2 x 110 + 70 = 290.
When the observers had worked out this, they compared
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.