Mind and Motion and Monism | Page 4

George John Romanes
grey matter, when thus stimulated, always throw into action the same groups of muscles. In other words, there are definite local areas of grey matter, which, when stimulated, throw into action definite groups of muscles. The surface of the cerebral hemispheres has now been in large measure explored and mapped out with reference to these so-called motor-centres; and thus our knowledge of the neuro-muscular machinery of the higher animals (including man) has been very greatly furthered. Here I may observe parenthetically that, as the brain is insentient to injuries inflicted upon its own substance, none of the experiments to which I have alluded entail any suffering to the animals experimented upon; and it is evident that the important information which has thus been gained could not have been gained by any other method. I may also observe that as these motor-centres occur in the grey matter of the hemispheres, a strong probability arises that they are not only the motor-centres, but also the volitional centres which originate the intellectual commands for the contraction of this and that group of muscles. Unfortunately we cannot interrogate an animal whether, when we stimulate a motor-centre, we arouse in the animal's mind an act of will to throw the corresponding group of muscles into action; but that these motor-centres are really centres of volition is pointed to by the fact, that electrical stimuli have no longer any effect upon them when the mental faculties of the animal are suspended by an?sthetics, nor in the case of young animals where the mental faculties have not yet been sufficiently developed to admit of voluntary co-ordination among the muscles which are concerned. On the whole, then, it is not improbable that on stimulating artificially these motor-centres of the brain, a physiologist is actually playing from without, and at his own pleasure, upon the volitions of the animal.
Turning, now, from this brief description of the structure and leading functions of the principal parts of the nervous system, I propose to consider what we know about the molecular movements which go on in different parts of this system, and which are concerned in all the processes of reflex adjustment, sensation, perception, emotion, instinct, thought, and volition.
First of all, the rate at which these molecular movements travel through a nerve has been measured, and found to be about 100 feet per second, or somewhat more than a mile a minute, in the nerves of a frog. In the nerves of a mammal it is just about twice as fast; so that if London were connected with New York by means of a mammalian nerve instead of an electric cable, it would require nearly a whole day for a message to pass.
Next, the time has also been measured which is required by a nerve-centre to perform its part in a reflex action, where no thought or consciousness is involved. This time, in the case of the winking reflex, and apart from the time required for the passage of the molecular waves up and down the sensory and motor nerves, is about 1/20 of a second. Such is the rate at which a nerve-centre conducts its operations when no consciousness or volition is involved. But when consciousness and volition are involved, or when the cerebral hemispheres are called into play, the time required is considerably greater. For the operations on the part of the hemispheres which are comprised in perceiving a simple sensation (such as an electrical shock) and the volitional act of signalling the perception, cannot be performed in less than 1/12 of a second, which is nearly twice as long as the time required by the lower nerve-centres for the performance of a reflex action. Other experiments prove that the more complex an act of perception, the more time is required for its performance. Thus, when the experiment is made to consist, not merely in signalling a perception, but in signalling one of two or more perceptions (such as an electrical shock on one or other of the two hands, which of five letters is suddenly exposed to view, &c.), a longer time is required for the more complex process of distinguishing which of the two or more expected stimuli is perceived, and in determining which of the appropriate signals to make in response. The time consumed by the cerebral hemispheres in meeting a 'dilemma' of this kind is from 1/5 to 1/20 of a second longer than that which they consume in the case of a simpler perception. Therefore, whenever mental operations are concerned, a relatively much greater time is required for a nerve-centre to perform its adjustments than when a merely mechanical or non-mental response is needed; and the more complex the mental operation the more time is necessary. Such may be termed the physiology of deliberation.
So much,
Continue reading on your phone by scaning this QR Code

 / 58
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.