Marvels of Modern Science | Page 5

Paul Severing
536,000 cubic feet, on March 29, rose to a height of 3,280, and on April 1, started with a crew of nine passengers from Frederickshafen to Munich. In a 35 mile gale it was carried beyond Munich, but Zeppelin succeeded in coming to anchor. Other Zeppelin balloons made remarkable voyages during the year. But the latest achievements (1910) of the old German aeronaut have put all previous records into the shade and electrified the whole world. His new passenger airship, the _Deutschland_, on June 22, made a 300 mile trip from Frederickshafen to Dusseldorf in 9 hours, carrying 20 passengers. This was at the rate of 33.33 miles per hour. During one hour of the journey a speed of 43-1/2 miles was averaged. The passengers were carried in a mahogany finished cabin and had all the comforts of a Pullman car, but most significant fact of all, the trip was made on schedule and with all regularity of an express train.
Two days later Zeppelin eclipsed his own record air voyage when his vessel carried 32 passengers, ten of whom were women, in a 100 mile trip from Dusseldorf to Essen, Dortmund and Bochum and back. At one time on this occasion while traveling with the wind the airship made a speed of 56-1/2 miles. It passed through a heavy shower and forced its way against a strong headwind without difficulty. The passengers were all delighted with the new mode of travel, which was very comfortable. This last dirigible masterpiece of Zeppelin may be styled the leviathan of the air. It is 485 feet long with a total lifting power of 44,000 lbs. It has three motors which total 330 horse power and it drives at an average speed of about 33 miles an hour. A regular passenger service has been established and tickets are selling at $50.
The present year can also boast some great aeroplane records, notably by Curtiss and Hamilton in America and Farman and Paulhan in Europe. Curtiss flew from Albany to New York, a distance of 137 miles, at an average speed of 55 miles an hour and Hamilton flew from New York to Philadelphia and return. The first night flight of a dirigible over New York City was made by Charles Goodale on July 19. He flew from Palisades Park on the Hudson and return.
From a scientific toy the Flying Machine has been developed and perfected into a practical means of locomotion. It bids fair at no distant date to revolutionize the transit of the world. No other art has ever made such progress in its early stages and every day witnesses an improvement.
The air, though invisible to the eye, has mass and therefore offers resistance to all moving bodies. Therefore air-mass and air resistance are the first principles to be taken into consideration in the construction of an aeroplane. It must be built so that the air-mass will sustain it and the motor, and the motor must be of sufficient power to overcome the air resistance.
A ship ploughing through the waves presents the line of least resistance to the water and so is shaped somewhat like a fish, the natural denizen of that element. It is different with the aeroplane. In the intangible domain it essays to overcome, there must be a sufficient surface to compress a certain volume of air to sustain the weight of the machinery.
The surfaces in regard to size, shape, curvature, bracing and material, are all important. A great deal depends upon the curve of the surfaces. Two machines may have the same extent of surface and develop the same rate of speed, yet one may have a much greater lifting power than the other, provided it has a more efficient curve to its surface. Many people have a fallacious idea that the surfaces of an aeroplane are planes and this doubt less arises from the word itself. However, the last syllable in aeroplane has nothing whatever to do with a flat surface. It is derived from the Greek _planos_, wandering, therefore the entire word signifies an air wanderer.
The surfaces are really aero curves arched in the rear of the front edge, thus allowing the supporting surface of the aeroplane in passing forward with its backward side set at an angle to the direction of its motion, to act upon the air in such a way as to tend to compress it on the under side.
After the surfaces come the rudders in importance. It is of vital consequence that the machine be balanced by the operator. In the present method of balancing an aeroplane the idea in mind is to raise the lower side of the machine and make the higher side lower in order that it can be quickly righted when it tips to one side from a gust of
Continue reading on your phone by scaning this QR Code

 / 59
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.