scanning machines, OCR software, public domain etexts, royalty free copyright licenses, and every other sort of contribution you can think of. Money should be paid to "Project Gutenberg Association / Carnegie-Mellon University".
*END*THE SMALL PRINT! FOR PUBLIC DOMAIN ETEXTS*Ver.04.29.93*END*
HEROES OF THE TELEGRAPH
By J. MUNRO
Author of 'ELECTRICITY AND ITS USES,' PIONEERS OF ELECTRICITY,' 'THE WIRE AND THE WAVE'; AND JOINT AUTHOR OF 'MUNRO AND JAMIESON'S POCKET-BOOK OF ELECTRICAL RULES AND TABLES.'
(Note: All accents etc. have been omitted. Italics have been converted to capital letters. The British 'pound' sign has been written as 'L'. Footnotes have been placed in square brackets at the place in the text where a suffix originally indicated their existence.)
PREFACE.
The present work is in some respects a sequel to the PIONEERS OF ELECTRICITY, and it deals with the lives and principal achievements of those distinguished men to whom we are indebted for the introduction of the electric telegraph and telephone, as well as other marvels of electric science.
CONTENTS.
CHAPTER I
. THE ORIGIN OF THE TELEGRAPH II. CHARLES WHEATSTONE III. SAMUEL MORSE IV. SIR WILLIAM THOMSON V. SIR WILLIAM SIEMENS VI. FLEEMING JENKIN VII. JOHANN PHILIPP REIS VIII. GRAHAM BELL IX. THOMAS ALVA EDISON X. DAVID EDWIN HUGHES
APPENDIX. I. CHARLES FERDINAND GAUSS II. WILLIAM EDWARD WEBER III. SIR WILLIAM FOTHERGILL COOKE IV. ALEXANDER BAIN V. DR. WERNER SIEMENS VI. LATIMER CLARK VII. COUNT DU MONCEL VIII. ELISHA GRAY
CHAPTER I
.
THE ORIGIN OF THE TELEGRAPH.
The history of an invention, whether of science or art, may be compared to the growth of an organism such as a tree. The wind, or the random visit of a bee, unites the pollen in the flower, the green fruit forms and ripens to the perfect seed, which, on being planted in congenial soil, takes root and flourishes. Even so from the chance combination of two facts in the human mind, a crude idea springs, and after maturing into a feasible plan is put in practice under favourable conditions, and so develops. These processes are both subject to a thousand accidents which are inimical to their achievement. Especially is this the case when their object is to produce a novel species, or a new and great invention like the telegraph. It is then a question of raising, not one seedling, but many, and modifying these in the lapse of time.
Similarly the telegraph is not to be regarded as the work of any one mind, but of many, and during a long course of years. Because at length the final seedling is obtained, are we to overlook the antecedent varieties from which it was produced, and without which it could not have existed? Because one inventor at last succeeds in putting the telegraph in operation, are we to neglect his predecessors, whose attempts and failures were the steps by which he mounted to success? All who have extended our knowledge of electricity, or devised a telegraph, and familiarised the public mind with the advantages of it, are deserving of our praise and gratitude, as well as he who has entered into their labours, and by genius and perseverance won the honours of being the first to introduce it.
Let us, therefore, trace in a rapid manner the history of the electric telegraph from the earliest times.
The sources of a river are lost in the clouds of the mountain, but it is usual to derive its waters from the lakes or springs which are its fountain-head. In the same way the origins of our knowledge of electricity and magnetism are lost in the mists of antiquity, but there are two facts which have come to be regarded as the starting-points of the science. It was known to the ancients at least 600 years before Christ, that a piece of amber when excited by rubbing would attract straws, and that a lump of lodestone had the property of drawing iron. Both facts were probably ascertained by chance. Humboldt informs us that he saw an Indian child of the Orinoco rubbing the seed of a trailing plant to make it attract the wild cotton; and, perhaps, a prehistoric tribesman of the Baltic or the plains of Sicily found in the yellow stone he had polished the mysterious power of collecting dust. A Greek legend tells us that the lodestone was discovered by Magnes, a shepherd who found his crook attracted by the rock.
However this may be, we are told that Thales of Miletus attributed the attractive properties of the amber and the lodestone to a soul within them. The name Electricity is derived from ELEKTRON, the Greek for amber, and Magnetism from Magnes, the name of the shepherd, or, more likely, from the city of Magnesia, in Lydia, where the stone occurred.
These properties of amber and lodestone appear to have been widely known. The Persian name for amber is KAHRUBA, attractor of straws,
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.