especially qualified to deal with the great problem of the origin of species, and in doing so to emancipate himself from ideas which were received with unquestioning faith by geologists whose studies had been circumscribed within the limits of Western Europe.
In the Cordilleras of Northern and Central Chili, Darwin, when studying still older formations, clearly recognised that they contain an admixture of the forms of life, which in Europe are distinctive of the Cretaceous and Jurassic periods respectively. He was thus led to conclude that the classification of geological periods, which fairly well expresses the facts that had been discovered in the areas where the science was first studied, is no longer capable of being applied when we come to the study of widely distant regions. This important conclusion led up to the further generalisation that each great geological period has exhibited a geographical distribution of the forms of animal and vegetable life, comparable to that which prevails in the existing fauna and flora. To those who are familiar with the extent to which the doctrine of universal formations has affected geological thought and speculation, both long before and since the time that Darwin wrote, the importance of this new standpoint to which he was able to attain will be sufficiently apparent. Like the idea of the extreme imperfection of the Geological Record, the doctrine of LOCAL geological formations is found permeating and moulding all the palaeontological reasonings of his great work.
In one of Darwin's letters, written while he was in South America, there is a passage we have already quoted, in which he expresses his inability to decide between the rival claims upon his attention of "the old crystalline group of rocks," and "the softer fossiliferous beds" respectively. The sixth chapter of the work before us, entitled "Plutonic and Metamorphic Rocks--Cleavage and Foliation," contains a brief summary of a series of observations and reasonings upon these crystalline rocks, which are, we believe, calculated to effect a revolution in geological science, and-- though their value and importance have long been overlooked--are likely to entitle Darwin in the future to a position among geologists, scarcely, if at all, inferior to that which he already occupies among biologists.
Darwin's studies of the great rock-masses of the Andes convinced him of the close relations between the granitic or Plutonic rocks, and those which were undoubtedly poured forth as lavas. Upon his return, he set to work, with the aid of Professor Miller, to make a careful study of the minerals composing the granites and those which occur in the lavas, and he was able to show that in all essential respects they are identical. He was further able to prove that there is a complete gradation between the highly crystalline or granitic rock-masses, and those containing more or less glassy matter between their crystals, which constitute ordinary lavas. The importance of this conclusion will be realised when we remember that it was then the common creed of geologists--and still continues to be so on the Continent--that all highly crystalline rocks are of great geological antiquity, and that the igneous ejections which have taken place since the beginning of the tertiary periods differ essentially, in their composition, their structure, and their mode of occurrence, from those which have made their appearance at earlier periods of the world's history.
Very completely have the conclusions of Darwin upon these subjects been justified by recent researches. In England, the United States, and Italy, examples of the gradual passage of rocks of truly granitic structure into ordinary lavas have been described, and the reality of the transition has been demonstrated by the most careful studies with the microscope. Recent researches carried on in South America by Professor Stelzner, have also shown the existence of a class of highly crystalline rocks--the "Andengranites"--which combine in themselves many of the characteristics which were once thought to be distinctive of the so-called Plutonic and volcanic rocks. No one familiar with recent geological literature--even in Germany and France, where the old views concerning the distinction of igneous products of different ages have been most stoutly maintained--can fail to recognise the fact that the principles contended for by Darwin bid fair at no distant period to win universal acceptance among geologists all over the globe.
Still more important are the conclusions at which Darwin arrived with respect to the origin of the schists and gneisses which cover so large an area in South America.
Carefully noting, by the aid of his compass and clinometer, at every point which he visited, the direction and amount of inclination of the parallel divisions in these rocks, he was led to a very important generalisation-- namely, that over very wide areas the direction (strike) of the planes of cleavage in slates, and of foliation in schists and gneisses, remained constant, though the
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.