Flying Machines: Construction and Operation | Page 5

W.J. Jackman and Thos. H. Russell
apparatus rose only a little from the car and exhibited such unstable equilibrium that the experiment was not renewed. The lift was only about one- third of what it would have been had the planes been properly spaced, say their full width apart, instead of one-ninth as erroneously devised.
Renard's "Dirigible Parachute."
In 1889 Commandant Renard, the eminent superintendent of the French Aeronautical Department, exhibited at the Paris Exposition of that year, an apparatus experimented with some years before, which he termed a "dirigible parachute." It consisted of an oviform body to which were pivoted two upright slats carrying above the body nine long superposed flat blades spaced about one-third of their width apart. When this apparatus was properly set at an angle to the longitudinal axis of the body and dropped from a balloon, it travelled back against the wind for a considerable distance before alighting. The course could be varied by a rudder. No practical application seems to have been made of this device by the French War Department, but Mr. J. P. Holland, the inventor of the submarine boat which bears his name, proposed in 1893 an arrangement of pivoted framework attached to the body of a flying machine which combines the principle of Commandant Renard with the curved blades experimented with by Mr. Phillips, now to be noticed, with the addition of lifting screws inserted among the blades.
Phillips Fails on Stability Problem.
In 1893 Mr. Horatio Phillips, of England, after some very interesting experiments with various wing sections, from which he deduced conclusions as to the shape of maximum lift, tested an apparatus resembling a Venetian blind which consisted of fifty wooden slats of peculiar shape, 22 feet long, one and a half inches wide, and two inches apart, set in ten vertical upright boards. All this was carried upon a body provided with three wheels. It weighed 420 pounds and was driven at 40 miles an hour on a wooden sidewalk by a steam engine of nine horsepower which actuated a two-bladed screw. The lift was satisfactory, being perhaps 70 pounds per horsepower, but the equilibrium was quite bad and the experiments were discontinued. They were taken up again in 1904 with a similar apparatus large enough to carry a passenger, but the longitudinal equilibrium was found to be defective. Then in 1907 a new machine was tested, in which four sets of frames, carrying similar sets of slat "sustainers" were inserted, and with this arrangement the longitudinal stability was found to be very satisfactory. The whole apparatus, with the operator, weighed 650 pounds. It flew about 200 yards when driven by a motor of 20 to 22 h.p. at 30 miles an hour, thus exhibiting a lift of about 32 pounds per h.p., while it will be remembered that the aeroplane of Wright Brothers exhibits a lifting capacity of 50 pounds to the h.p.
Hargrave's Kite Experiments.
After experimenting with very many models and building no less than eighteen monoplane flying model machines, actuated by rubber, by compressed air and by steam, Mr. Lawrence Hargrave, of Sydney, New South Wales, invented the cellular kite which bears his name and made it known in a paper contributed to the Chicago Conference on Aerial Navigation in 1893, describing several varieties. The modern construction is well known, and consists of two cells, each of superposed surfaces with vertical side fins, placed one behind the other and connected by a rod or frame. This flies with great steadiness without a tail. Mr. Hargrave's idea was to use a team of these kites, below which he proposed to suspend a motor and propeller from which a line would be carried to an anchor in the ground. Then by actuating the propeller the whole apparatus would move forward, pick up the anchor and fly away. He said: "The next step is clear enough, namely, that a flying machine with acres of surface can be safely got under way or anchored and hauled to the ground by means of the string of kites."
The first tentative experiments did not result well and emphasized the necessity for a light motor, so that Mr. Hargrave has since been engaged in developing one, not having convenient access to those which have been produced by the automobile designers and builders.
Experiments With Glider Model.
And here a curious reminiscence may be indulged in. In 1888 the present writer experimented with a two-cell gliding model, precisely similar to a Hargrave kite, as will be confirmed by Mr. Herring. It was frequently tested by launching from the top of a three-story house and glided downward very steadily in all sorts of breezes, but the angle of descent was much steeper than that of birds, and the weight sustained per square foot was less than with single cells, in consequence of the lesser support afforded by
Continue reading on your phone by scaning this QR Code

 / 66
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.