Five of Maxwells Papers | Page 4

James Clerk Maxwell
hoped that some future President of Section A will crown the edifice and make the Tetralogy (symbolizable by A+A', A, A', AA') complete."
The theme thus distinctly laid down for his successor by our late President is indeed a magnificent one, far too magnificent for any efforts of mine to realize. I have endeavoured to follow Mr Spottiswoode, as with far-reaching vision he distinguishes the systems of science into which phenomena, our knowledge of which is still in the nebulous stage, are growing. I have been carried by the penetrating insight and forcible expression of Dr Tyndall into that sanctuary of minuteness and of power where molecules obey the laws of their existence, clash together in fierce collision, or grapple in yet more fierce embrace, building up in secret the forms of visible things. I have been guided by Prof. Sylvester towards those serene heights
"Where never creeps a cloud, or moves a wind, Nor ever falls the least white star of snow, Nor ever lowest roll of thunder moans, Nor sound of human sorrow mounts to mar Their sacred everlasting calm."
But who will lead me into that still more hidden and dimmer region where Thought weds Fact, where the mental operation of the mathematician and the physical action of the molecules are seen in their true relation? Does not the way to it pass through the very den of the metaphysician, strewed with the remains of former explorers, and abhorred by every man of science? It would indeed be a foolhardy adventure for me to take up the valuable time of the Section by leading you into those speculations which require, as we know, thousands of years even to shape themselves intelligibly.
But we are met as cultivators of mathematics and physics. In our daily work we are led up to questions the same in kind with those of metaphysics; and we approach them, not trusting to the native penetrating power of our own minds, but trained by a long-continued adjustment of our modes of thought to the facts of external nature.
As mathematicians, we perform certain mental operations on the symbols of number or of quantity, and, by proceeding step by step from more simple to more complex operations, we are enabled to express the same thing in many different forms. The equivalence of these different forms, though a necessary consequence of self-evident axioms, is not always, to our minds, self-evident; but the mathematician, who by long practice has acquired a familiarity with many of these forms, and has become expert in the processes which lead from one to another, can often transform a perplexing expression into another which explains its meaning in more intelligible language.
As students of Physics we observe phenomena under varied circumstances, and endeavour to deduce the laws of their relations. Every natural phenomenon is, to our minds, the result of an infinitely complex system of conditions. What we set ourselves to do is to unravel these conditions, and by viewing the phenomenon in a way which is in itself partial and imperfect, to piece out its features one by one, beginning with that which strikes us first, and thus gradually learning how to look at the whole phenomenon so as to obtain a continually greater degree of clearness and distinctness. In this process, the feature which presents itself most forcibly to the untrained inquirer may not be that which is considered most fundamental by the experienced man of science; for the success of any physical investigation depends on the judicious selection of what is to be observed as of primary importance, combined with a voluntary abstraction of the mind from those features which, however attractive they appear, we are not yet sufficiently advanced in science to investigate with profit.
Intellectual processes of this kind have been going on since the first formation of language, and are going on still. No doubt the feature which strikes us first and most forcibly in any phenomenon, is the pleasure or the pain which accompanies it, and the agreeable or disagreeable results which follow after it. A theory of nature from this point of view is embodied in many of our words and phrases, and is by no means extinct even in our deliberate opinions.
It was a great step in science when men became convinced that, in order to understand the nature of things, they must begin by asking, not whether a thing is good or bad, noxious or beneficial, but of what kind is it? and how much is there of it? Quality and Quantity were then first recognized as the primary features to be observed in scientific inquiry.
As science has been developed, the domain of quantity has everywhere encroached on that of quality, till the process of scientific inquiry seems to have become simply the measurement and registration of quantities, combined
Continue reading on your phone by scaning this QR Code

 / 21
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.