ideas leads to a knowledge of both, more profound than could be obtained by studying each system separately.
There are men who, when any relation or law, however complex, is put before them in a symbolical form, can grasp its full meaning as a relation among abstract quantities. Such men sometimes treat with indifference the further statement that quantities actually exist in nature which fulfil this relation. The mental image of the concrete reality seems rather to disturb than to assist their contemplations. But the great majority of mankind are utterly unable, without long training, to retain in their minds the unembodied symbols of the pure mathematician, so that, if science is ever to become popular, and yet remain scientific, it must be by a profound study and a copious application of those principles of the mathematical classification of quantities which, as we have seen, lie at the root of every truly scientific illustration.
There are, as I have said, some minds which can go on contemplating with satisfaction pure quantities presented to the eye by symbols, and to the mind in a form which none but mathematicians can conceive.
There are others who feel more enjoyment in following geometrical forms, which they draw on paper, or build up in the empty space before them.
Others, again, are not content unless they can project their whole physical energies into the scene which they conjure up. They learn at what a rate the planets rush through space, and they experience a delightful feeling of exhilaration. They calculate the forces with which the heavenly bodies pull at one another, and they feel their own muscles straining with the effort.
To such men momentum, energy, mass are not mere abstract expressions of the results of scientific inquiry. They are words of power, which stir their souls like the memories of childhood.
For the sake of persons of these different types, scientific truth should be presented in different forms, and should be regarded as equally scientific whether it appears in the robust form and the vivid colouring of a physical illustration, or in the tenuity and paleness of a symbolical expression.
Time would fail me if I were to attempt to illustrate by examples the scientific value of the classification of quantities. I shall only mention the name of that important class of magnitudes having direction in space which Hamilton has called vectors, and which form the subject-matter of the Calculus of Quaternions, a branch of mathematics which, when it shall have been thoroughly understood by men of the illustrative type, and clothed by them with physical imagery, will become, perhaps under some new name, a most powerful method of communicating truly scientific knowledge to persons apparently devoid of the calculating spirit.
The mutual action and reaction between the different departments of human thought is so interesting to the student of scientific progress, that, at the risk of still further encroaching on the valuable time of the Section, I shall say a few words on a branch of physics which not very long ago would have been considered rather a branch of metaphysics. I mean the atomic theory, or, as it is now called, the molecular theory of the constitution of bodies.
Not many years ago if we had been asked in what regions of physical science the advance of discovery was least apparent, we should have pointed to the hopelessly distant fixed stars on the one hand, and to the inscrutable delicacy of the texture of material bodies on the other.
Indeed, if we are to regard Comte as in any degree representing the scientific opinion of his time, the research into what takes place beyond our own solar system seemed then to be exceedingly unpromising, if not altogether illusory.
The opinion that the bodies which we see and handle, which we can set in motion or leave at rest, which we can break in pieces and destroy, are composed of smaller bodies which we cannot see or handle, which are always in motion, and which can neither be stopped nor broken in pieces, nor in any way destroyed or deprived of the least of their properties, was known by the name of the Atomic theory. It was associated with the names of Democritus, Epicurus, and Lucretius, and was commonly supposed to admit the existence only of atoms and void, to the exclusion of any other basis of things from the universe.
In many physical reasonings and mathematical calculations we are accustomed to argue as if such substances as air, water, or metal, which appear to our senses uniform and continuous, were strictly and mathematically uniform and continuous.
We know that we can divide a pint of water into many millions of portions, each of which is as fully endowed with all the properties of water as the whole pint was; and it seems only natural
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.