result of mixing two coloured powders is not by any means the same as mixing the beams of light which flow from each separately. In the latter case we receive all the light which comes either from the one powder or the other. In the former, much of the light coming from one powder falls on particles of the other, and we receive only that portion which has escaped absorption by one or other. Thus the light coming from a mixture of blue and yellow powder, consists partly of light coming directly from blue particles or yellow particles, and partly of light acted on by both blue and yellow particles. This latter light is green, since the blue stops the red, yellow, and orange, and the yellow stops the blue and violet. I have made experiments on the mixture of blue and yellow light--by rapid rotation, by combined reflexion and transmission, by viewing them out of focus, in stripes, at a great distance, by throwing the colours of the spectrum on a screen, and by receiving them into the eye directly; and I have arranged a portable apparatus by which any one may see the result of this or any other mixture of the colours of the spectrum. In all these cases blue and yellow do not make green. I have also made experiments on the mixture of coloured powders. Those which I used principally were "mineral blue" (from copper) and "chrome-yellow." Other blue and yellow pigments gave curious results, but it was more difficult to make the mixtures, and the greens were less uniform in tint. The mixtures of these colours were made by weight, and were painted on discs of paper, which were afterwards treated in the manner described in my paper "On Colour as perceived by the Eye," in the _Transactions of the Royal Society of Edinburgh_, Vol. XXI. Part 2. The visible effect of the colour is estimated in terms of the standard-coloured papers:--vermilion (V), ultramarine (U), and emerald-green (E). The accuracy of the results, and their significance, can be best understood by referring to the paper before mentioned. I shall denote mineral blue by B, and chrome-yellow by Y; and B3 Y5 means a mixture of three parts blue and five parts yellow.
Given Colour. Standard Colours. Coefficient V. U. E. of brightness.
B8 , 100 = 2 36 7 ............ 45 B7 Y1, 100 = 1 18 17 ............ 37 B6 Y2, 100 = 4 11 34 ............ 49 B5 Y3, 100 = 9 5 40 ............ 54 B4 Y4, 100 = 15 1 40 ............ 56 B3 Y5, 100 = 22 - 2 44 ............ 64 B2 Y6, 100 = 35 -10 51 ............ 76 B1 Y7, 100 = 64 -19 64 ............ 109 Y8, 100 = 180 -27 124 ............ 277
The columns V, U, E give the proportions of the standard colours which are equivalent to 100 of the given colour; and the sum of V, U, E gives a coefficient, which gives a general idea of the brightness. It will be seen that the first admixture of yellow diminishes the brightness of the blue. The negative values of U indicate that a mixture of V, U, and E cannot be made equivalent to the given colour. The experiments from which these results were taken had the negative values transferred to the other side of the equation. They were all made by means of the colour-top, and were verified by repetition at different times. It may be necessary to remark, in conclusion, with reference to the mode of registering visible colours in terms of three arbitrary standard colours, that it proceeds upon that theory of three primary elements in the sensation of colour, which treats the investigation of the laws of visible colour as a branch of human physiology, incapable of being deduced from the laws of light itself, as set forth in physical optics. It takes advantage of the methods of optics to study vision itself; and its appeal is not to physical principles, but to our consciousness of our own sensations.
*** On an Instrument to illustrate Poinsot's Theory of Rotation.
James Clerk Maxwell
[From the Report of the British Association, 1856.]
In studying the rotation of a solid body according to Poinsot's method, we have to consider the successive positions of the instantaneous axis of rotation with reference both to directions fixed in space and axes assumed in the moving body. The paths traced out by the pole of this axis on the invariable plane and on the _central ellipsoid_ form interesting subjects of mathematical investigation. But when we attempt to follow with our eye the motion of a rotating body, we find it difficult to determine through what point of the body the instantaneous axis passes at any time,--and to determine its path must
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.