Filosofia Fundamental, Volumen III | Page 8

Jaime Balmes
del número, en la operacion de contar, esto es, en el terreno de la aritmética.
La misma prueba de superposicion, no obstante su carácter eminentemente geométrico, necesita la numeracion, en cuanto se haga una superposicion repetida. Si se comparan dos arcos enteramente iguales, demostrando esta igualdad por medio de la superposicion, no necesitamos la idea del número; pero si comparamos dos arcos desiguales con la mira de apreciar la relacion de su cantidad y empleamos el método de superponer el menor al mayor, repetidas veces, ya contamos, ya empleamos la idea de número y nos hallamos otra vez en el terreno de la aritmética. Al comparar entre sí los radios de un círculo, sacamos su igualdad por el método de superposicion, prescindiendo de la idea de número; pero si nos proponemos conocer la relacion del diámetro á los radios, nos valemos de la idea de dos diciendo que el diámetro es duplo del radio, y entramos otra vez en los dominios de la aritmética. A medida que se adelanta en la combinacion de las ideas geométricas, se van empleando mas y mas las aritméticas. Así en el triángulo entra por necesidad la idea del número tres; y en una de sus propiedades esenciales entran la de suma, la de tres y la de dos: la suma de los tres ángulos de un triángulo es igual á dos rectos.
[32.] No se crea que la idea del número pueda ser reemplazada por la intuicion sensible de la figura cuyas propiedades y relaciones se trata de averiguar. Esta intuicion en muchos casos es imposible, como se ve cuando se habla de figuras de muchos lados. Fácilmente nos representamos en la imaginacion un triángulo y hasta un cuadrilátero; la representacion se nos hace ya algo difícil al tratarse de un pentágono; mas todavía, de un hexágono ó un heptágono; y en llegando la figura á cierto número de lados se va escapando á la intuicion sensible, hasta que se hace ya imposible de todo punto, apreciarla por la mera intuicion. ?Quién es capaz de representarse en la imaginacion un polígono de mil lados?
[33.] Esta superioridad de las ideas no geométricas con respecto á las geométricas, es sumamente notable, porque indica que la esfera de la actividad intelectual se dilata á medida que se eleva sobre la intuicion sensible. La extension, que como hemos visto ya (Lib. III.) sirve de base no solo á la geometría sino tambien á las ciencias naturales, en cuanto representa sensiblemente la intensidad de ciertos fenómenos, es del todo inútil para hacernos penetrar en la íntima naturaleza de estos y conducirnos de lo que aparece á lo que es. Esta idea y las demás que á ella se subordinan, es por decirlo así una idea inerte de la cual no brota ningun principio vital que fecunde nuestro entendimiento y mucho menos la realidad: fondo insondable en que puede ejercerse nuestra actividad intelectual con la seguridad de no encontrar en él otra cosa que lo que pongamos nosotros mismos; objeto muerto que se presta á todas las combinaciones imaginables sin que por sí mismo sea capaz de producir nada ni contener sino lo que se le ha dado. Los físicos al considerar la inercia como propiedad de la materia, han atendido, tal vez mas de lo que ellos se figuran, á la idea de extension que nos presenta lo inerte por excelencia.
[34.] Las ideas de número, de causa, de substancia, son fecundas en resultados y se aplican á todos los ramos de las ciencias. Apenas se puede hablar sin que se las exprese; diríase que son elementos constitutivos de la inteligencia, pues que sin ellas se desvanece como fugaz ilusion. Conducidlas por todo el ámbito que ofrece objetos á la actividad intelectual, y á todo se extienden, á todo se aplican, para todo son necesarias, si se quiere que la inteligencia pueda percibir y combinar. Es indiferente que los objetos sean sensibles ó insensibles, que se trate de nuestra inteligencia ó de otras sometidas á leyes diferentes; donde quiera que concebimos el acto de entender, concebimos tambien aquellas ideas primitivas como elementos indispensables para que el acto intelectual pueda realizarse. La existencia misma, y hasta la posibilidad del mundo sensible, son indiferentes á la existencia y combinacion de dichos elementos: ellos existirian en un mundo de inteligencias puras, aun cuando el universo sensible no fuera mas que ilusion ó una absurda quimera.
Por el contrario, tomad las ideas geométricas y hacedlas salir de la esfera sensible: todo cuanto sobre ellas fundareis serán palabras que no significan nada. Las ideas de substancia, de causa, de relacion y otras semejantes, no brotan de las ideas geométricas: cuando nos fijamos en estas solas, tenemos delante un campo inmenso donde la vista se dilata por espacios sin fin; pero donde reinan el frio y el silencio de
Continue reading on your phone by scaning this QR Code

 / 104
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.