the metallurgist, nor the manufactory of the druggist, fitted up with stills and retorts. On the contrary, a light, warm, comfortable room, where beautifully constructed lamps supply the place of furnaces, and the pure and odourless flame of gas, or of spirits of wine, supersedes coal and other fuel, and gives us all the fire we need; where health is not invaded, nor the free exercise of thought impeded: there we pursue our inquiries, and interrogate Nature to reveal her secrets.
To these simple means must be added "The Balance," and then we possess everything which is required for the most extensive researches.
The great distinction between the manner of proceeding in chemistry and natural philosophy is, that one weighs, the other measures. The natural philosopher has applied his measures to nature for many centuries, but only for fifty years have we attempted to advance our philosophy by weighing.
For all great discoveries chemists are indebted to the "balance"--that incomparable instrument which gives permanence to every observation, dispels all ambiguity, establishes truth, detects error, and guides us in the true path of inductive science.
The balance, once adopted as a means of investigating nature, put an end to the school of Aristotle in physics. The explanation of natural phenomena by mere fanciful speculations, gave place to a true natural philosophy. Fire, air, earth, and water, could no longer be regarded as elements. Three of them could henceforth be considered only as significative of the forms in which all matter exists. Everything with which we are conversant upon the surface of the earth is solid, liquid, or aeriform; but the notion of the elementary nature of air, earth, and water, so universally held, was now discovered to belong to the errors of the past.
Fire was found to be but the visible and otherwise perceptible indication of changes proceeding within the, so called, elements.
Lavoisier investigated the composition of the atmosphere and of water, and studied the many wonderful offices performed by an element common to both in the scheme of nature, namely, oxygen: and he discovered many of the properties of this elementary gas.
After his time, the principal problem of chemical philosophers was to determine the composition of the solid matters composing the earth. To the eighteen metals previously known were soon added twenty-four discovered to be constituents of minerals. The great mass of the earth was shown to be composed of metals in combination with oxygen, to which they are united in one, two, or more definite and unalterable proportions, forming compounds which are termed metallic oxides, and these, again, combined with oxides of other bodies, essentially different to metals, namely, carbon and silicium. If to these we add certain compounds of sulphur with metals, in which the sulphur takes the place of oxygen, and forms sulphurets, and one other body,--common salt,--(which is a compound of sodium and chlorine), we have every substance which exists in a solid form upon our globe in any very considerable mass. Other compounds, innumerably various, are found only in small scattered quantities.
The chemist, however, did not remain satisfied with the separation of minerals into their component elements, i.e. their analysis; but he sought by synthesis, i.e. by combining the separate elements and forming substances similar to those constructed by nature, to prove the accuracy of his processes and the correctness of his conclusions. Thus he formed, for instance, pumice-stone, feldspar, mica, iron pyrites, &c. artificially.
But of all the achievements of inorganic chemistry, the artificial formation of lapis lazuli was the most brilliant and the most conclusive. This mineral, as presented to us by nature, is calculated powerfully to arrest our attention by its beautiful azure-blue colour, its remaining unchanged by exposure to air or to fire, and furnishing us with a most valuable pigment, Ultramarine, more precious than gold!
The analysis of lapis lazuli represented it to be composed of silica, alumina, and soda, three colourless bodies, with sulphur and a trace of iron. Nothing could be discovered in it of the nature of a pigment, nothing to which its blue colour could be referred, the cause of which was searched for in vain. It might therefore have been supposed that the analyst was here altogether at fault, and that at any rate its artificial production must be impossible. Nevertheless, this has been accomplished, and simply by combining in the proper proportions, as determined by analysis, silica, alumina, soda, iron, and sulphur. Thousands of pounds weight are now manufactured from these ingredients, and this artificial ultramarine is as beautiful as the natural, while for the price of a single ounce of the latter we may obtain many pounds of the former.
With the production of artificial lapis lazuli, the formation of mineral bodies by synthesis ceased to be a scientific problem to the chemist; he has no longer sufficient interest in
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.