Equinoctial Regions of America, vol 2 | Page 6

Alexander von Humboldt
scattered trees and parasite plants, enveloped with a thick sward, less capable of emitting radiant caloric than the soil that is cultivated and consequently not sheltered from the rays of the sun. With the destruction of the trees, and the increase of the cultivation of sugar, indigo, and cotton, the springs, and all the natural supplies of the lake of Valencia, have diminished from year to year. It is difficult to form a just idea of the enormous quantity of evaporation which takes place under the torrid zone, in a valley surrounded with steep declivities, where a regular breeze and descending currents of air are felt towards evening, and the bottom of which is flat, and looks as if levelled by the waters. It has been remarked, that the heat which prevails throughout the year at Cura, Guacara, Nueva Valencia, and on the borders of the lake, is the same as that felt at midsummer in Naples and Sicily. The mean annual temperature of the valleys of Aragua is nearly 25.5 degrees; my hygrometrical observations of the month of February, taking the mean of day and night, gave 71.4 degrees of the hair hygrometer. As the words great drought and great humidity have no determinate signification, and air that would be called very dry in the lower regions of the tropics would be regarded as humid in Europe, we can judge of these relations between climates only by comparing spots situated in the same zone. Now at Cumana, where it sometimes does not rain during a whole year, and where I had the means of collecting a great number of hygrometric observations made at different hours of the day and night, the mean humidity of the air is 86 degrees; corresponding to the mean temperature of 27.7 degrees. Taking into account the influence of the rainy months, that is to say, estimating the difference observed in other parts of South America between the mean humidity of the dry months and that of the whole year; an annual mean humidity is obtained, for the valleys of Aragua, at farthest of 74 degrees, the temperature being 25.5 degrees. In this air, so hot, and at the same time so little humid, the quantity of water evaporated is enormous. The theory of Dalton estimates, under the conditions just stated, for the thickness of the sheet of water evaporated in an hour's time, 0.36 mill., or 3.8 lines in twenty-four hours. Assuming for the temperate zone, for instance at Paris, the mean temperature to be 10.6 degrees, and the mean humidity 82 degrees, we find, according to the same formulae, 0.10 mill., an hour, and 1 line for twenty-four hours. If we prefer substituting for the uncertainty of these theoretical deductions the direct results of observation, we may recollect that in Paris, and at Montmorency, the mean annual evaporation was found by Sedileau and Cotte, to be from 32 in. 1 line to 38 in. 4 lines. Two able engineers in the south of France, Messrs. Clausade and Pin, found, that in subtracting the effects of filtrations, the waters of the canal of Languedoc, and the basin of Saint Ferreol lose every year from 0.758 met. to 0.812 met., or from 336 to 360 lines. M. de Prony found nearly similar results in the Pontine marshes. The whole of these experiments, made in the latitudes of 41 and 49 degrees, and at 10.5 and 16 degrees of mean temperature, indicate a mean evaporation of one line, or one and three-tenths a day. In the torrid zone, in the West India Islands for instance, the effect of evaporation is three times as much, according to Le Gaux, and double according to Cassan. At Cumana, in a place where the atmosphere is far more loaded with humidity than in the valley of Aragua, I have often seen evaporate during twelve hours, in the sun, 8.8 mill., in the shade 3.4 mill.; and I believe, that the annual produce of evaporation in the rivers near Cumana is not less than one hundred and thirty inches. Experiments of this kind are extremely delicate, but what I have stated will suffice to demonstrate how great must be the quantity of vapour that rises from the lake of Valencia, and from the surrounding country, the waters of which flow into the lake. I shall have occasion elsewhere to resume this subject; for, in a work which displays the great laws of nature in different zones, we must endeavour to solve the problem of the mean tension of the vapours contained in the atmosphere in different latitudes, and at different heights above the surface of the ocean.
A great number of local circumstances cause the produce of evaporation to vary; it changes in proportion as more or less shade covers the basin
Continue reading on your phone by scaning this QR Code

 / 265
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.