O. This water should be of practically the same average temperature as that which is to be used during the test. Barrel 3 should be high enough above the feed pump so that the pump will handle hot water. Put barrel 3 on a scales, before connecting it to the feed pump, and weigh it. Then let the water from barrel 1 run into barrel 3, and weigh again. The second weight minus the first weight is the net weight of water run in from barrel 1 and is the weight of water contained in barrel 1 when filled to the overflow. The weight of water in barrel 2 when it is filled to the overflow can be found in like manner. Mark these weights down.
[Illustration: Fig. 2.]
When the net weights are found and barrel 3 is removed from the scales and connected to the feed pump, the apparatus is ready to begin the test. Start with the level of the water about 1 foot below the top of the barrel 3, and drive a nail into the barrel to mark this level. When the test is finished, the level should be brought to the same point, so that the water that has passed through barrels 1 and 2 will accurately represent the weight of water fed to the boiler during the test.
When the test is to begin, stop the feed pump and tie a string around the gage glass on the boiler to mark the height of the water level in the boiler. Then start the pump connected to barrel 3. Fill barrels 1 and 2 up to the overflow before the test is started. Then open the valve V on barrel 1 and let the water run into barrel 3 as fast as the feed pump draws water from barrel 3. When barrel 1 is emptied close its valve V and open its valve A so as to refill it.
While barrel 1 is filling empty barrel 2 into barrel 3 in the same way, and continue to fill and empty barrels 1 and 2 alternately. In this way barrel 3 will be kept supplied with water that has been measured in barrels 1 and 2, the net weights of which were found before the test began. Keep a separate tally of the number of times each of the barrels 1 and 2 is emptied into barrel 3. At the end of the test the number of tallies for each barrel multiplied by the weight of the water that barrel will hold will be the weight of water measured in that barrel. The sum of these weights for barrels 1 and 2 will be the weight of water used in the test.
With a three-barrel arrangement like this, water can be weighed rapidly enough to supply 300 boiler horsepower.
Before starting a test make sure that there is no chance for water to leak into or out of the boiler. See that the blow-off is tight, that there is no drip from gage cocks, and that the feed-line connections are tight, so that all the water fed to the boiler will represent accurately the amount evaporated during the test.
If a meter is used instead of the three-barrel method, make absolutely sure that the meter is correct, as the accuracy of the test depends on the accuracy with which the water measurements are made. After a meter is installed, test it to see that it operates correctly under the plant conditions.
The water level in the boiler should be the same at the end of the test as at the beginning. As the time for stopping the test draws near, therefore, try to bring the conditions the same as at the start. Do not, however, run the feed pump rapidly in the last few minutes for the test in order to obtain the same water level. If there is a slight difference in level, calculate the weight of water it represents and make the necessary correction to the total weight of water fed.
TEMPERATURE OF FEED WATER.
Every plant should have a thermometer on the feed line, so as to find the temperature of the feed water. Preferably, this thermometer should be of the recording type. If such a form of thermometer is used during the test, it is unnecessary to take the feed temperature at stated intervals, as the record will show the varying temperatures, and so the average feed temperature during the test can easily be found.
If there is no thermometer in the feed line, take the feed-water temperature by means of a thermometer hung in barrel 3 (figure 2) by a hook over the edge of the barrel. Read this thermometer every half hour during the test if the feed-water temperature is fairly uniform; but if it varies considerably, read the thermometer
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.