the most trifling departure from the true direction causing great variations in the magnitude. The pressure tube anemometer (fig. 1) utilizes the increased pressure in the open mouth of a straight tube facing the wind, and the decrease of pressure caused inside when the wind blows over a ring of small holes drilled through the metal of a vertical tube which is closed at the upper end. The pressure differences on which the action depends are very small, and special means are required to register them, but in the ordinary form of recording anemometer (fig. 2), any wind capable of turning the vane which keeps the mouth of the tube facing the wind is capable of registration.
[v.02 p.0003]
The great advantage of the tube anemometer lies in the fact that the exposed part can be mounted on a high pole, and requires no oiling or attention for years; and the registering part can be placed in any convenient position, no matter how far from the external part. Two connecting tubes are required. It might appear at first sight as though one connexion would serve, but the differences in pressure on which these instruments depend are so minute, that the pressure of the air in the room where the recording part is placed has to be considered. Thus if the instrument depends on the pressure or suction effect alone, and this pressure or suction is measured against the air pressure in an ordinary room, in which the doors and windows are carefully closed and a newspaper is then burnt up the chimney, an effect may be produced equal to a wind of 10 m. an hour; and the opening of a window in rough weather, or the opening of a door, may entirely alter the registration.
[Illustration: FIG. 1 & FIG. 2 Anemometers.]
The connexion between the velocity and the pressure of the wind is one that is not yet known with absolute certainty. Many text-books on engineering give the relation P=.005 _v_^2 when P is the pressure in lb per sq. ft. and v the velocity in miles per hour. The history of this untrue relation is curious. It was given about the end of the 18th century as based on some experiments, but with a footnote stating that little reliance could be placed on it. The statement without the qualifying note was copied from book to book, and at last received general acceptance. There is no doubt that under average conditions of atmospheric density, the .005 should be replaced by .003, for many independent authorities using different methods have found values very close to this last figure. It is probable that the wind pressure is not strictly proportional to the extent of the surface exposed. Pressure plates are generally of moderate size, from a half or quarter of a sq. ft. up to two or three sq. ft., are round or square, and for these sizes, and shapes, and of course for a flat surface, the relation P=.003 _v_^2 is fairly correct.
In the tube anemometer also it is really the pressure that is measured, although the scale is usually graduated as a velocity scale. In cases where the density of the air is not of average value, as on a high mountain, or with an exceptionally low barometer for example, an allowance must be made. Approximately 1-1/2% should be added to the velocity recorded by a tube anemometer for each 1000 ft. that it stands above sea-level.
(W.H. Di.)
ANEMONE, or WIND-FLOWER (from the Gr. [Greek: anemos], wind), a genus of the buttercup order (Ranunculaceae), containing about ninety species in the north and south temperate zones. _Anemone nemorosa_, wood anemone, and _A. Pulsatilla_, Pasque-flower, occur in Britain; the latter is found on chalk downs and limestone pastures in some of the more southern and eastern counties. The plants are perennial herbs with an underground rootstock, and radical, more or less deeply cut, leaves. The elongated flower stem bears one or several, white, red, blue or rarely yellow, flowers; there is an involucre of three leaflets below each flower. The fruits often bear long hairy styles which aid their distribution by the wind. Many of the species are favourite garden plants; among the best known is _Anemone coronaria_, often called the poppy anemone, a tuberous-rooted plant, with parsley-like divided leaves, and large showy poppy-like blossoms on stalks of from 6 to 9-in. high; the flowers are of various colours, but the principal are scarlet, crimson, blue, purple and white. There are also double-flowered varieties, in which the stamens in the centre are replaced by a tuft of narrow petals. It is an old garden favourite, and of the double forms there are named varieties. They grow best in a loamy soil, enriched with well-rotted manure, which should be dug in below the tubers. These may
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.