Edison, His Life and Inventions | Page 3

Dyer and Martin
introduction in practical form of the telegraph, the submarine cable, the telephone, the electric light, the electric railway, the electric trolley-car, the storage battery, the electric motor, the phonograph, the wireless telegraph; and that the influence of these on the world's affairs has not been excelled at any time by that of any other corresponding advances in the arts and sciences. These pages deal with Edison's share in the great work of the last half century in abridging distance, communicating intelligence, lessening toil, improving illumination, recording forever the human voice; and on behalf of inventive genius it may be urged that its beneficent results and gifts to mankind compare with any to be credited to statesman, warrior, or creative writer of the same period.
Viewed from the standpoint of inventive progress, the first half of the nineteenth century had passed very profitably when Edison appeared--every year marked by some notable achievement in the arts and sciences, with promise of its early and abundant fruition in commerce and industry. There had been exactly four decades of steam navigation on American waters. Railways were growing at the rate of nearly one thousand miles annually. Gas had become familiar as a means of illumination in large cities. Looms and tools and printing-presses were everywhere being liberated from the slow toil of man-power. The first photographs had been taken. Chloroform, nitrous oxide gas, and ether had been placed at the service of the physician in saving life, and the revolver, guncotton, and nitroglycerine added to the agencies for slaughter. New metals, chemicals, and elements had become available in large numbers, gases had been liquefied and solidified, and the range of useful heat and cold indefinitely extended. The safety-lamp had been given to the miner, the caisson to the bridge-builder, the anti-friction metal to the mechanic for bearings. It was already known how to vulcanize rubber, and how to galvanize iron. The application of machinery in the harvest-field had begun with the embryonic reaper, while both the bicycle and the automobile were heralded in primitive prototypes. The gigantic expansion of the iron and steel industry was foreshadowed in the change from wood to coal in the smelting furnaces. The sewing-machine had brought with it, like the friction match, one of the most profound influences in modifying domestic life, and making it different from that of all preceding time.
Even in 1847 few of these things had lost their novelty, most of them were in the earlier stages of development. But it is when we turn to electricity that the rich virgin condition of an illimitable new kingdom of discovery is seen. Perhaps the word "utilization" or "application" is better than discovery, for then, as now, an endless wealth of phenomena noted by experimenters from Gilbert to Franklin and Faraday awaited the invention that could alone render them useful to mankind. The eighteenth century, keenly curious and ceaselessly active in this fascinating field of investigation, had not, after all, left much of a legacy in either principles or appliances. The lodestone and the compass; the frictional machine; the Leyden jar; the nature of conductors and insulators; the identity of electricity and the thunder-storm flash; the use of lightning-rods; the physiological effects of an electrical shock--these constituted the bulk of the bequest to which philosophers were the only heirs. Pregnant with possibilities were many of the observations that had been recorded. But these few appliances made up the meagre kit of tools with which the nineteenth century entered upon its task of acquiring the arts and conveniences now such an intimate part of "human nature's daily food" that the average American to-day pays more for his electrical service than he does for bread.
With the first year of the new century came Volta's invention of the chemical battery as a means of producing electricity. A well-known Italian picture represents Volta exhibiting his apparatus before the young conqueror Napoleon, then ravishing from the Peninsula its treasure of ancient art and founding an ephemeral empire. At such a moment this gift of despoiled Italy to the world was a noble revenge, setting in motion incalculable beneficent forces and agencies. For the first time man had command of a steady supply of electricity without toil or effort. The useful results obtainable previously from the current of a frictional machine were not much greater than those to be derived from the flight of a rocket. While the frictional appliance is still employed in medicine, it ranks with the flint axe and the tinder-box in industrial obsolescence. No art or trade could be founded on it; no diminution of daily work or increase of daily comfort could be secured with it. But the little battery with its metal plates in a weak solution proved a perennial reservoir of electrical energy, safe and controllable, from which
Continue reading on your phone by scaning this QR Code

 / 338
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.