Discours de la méthode | Page 9

René Descartes
hors de lui. S?r de tous les principes de ses connoissances, il va maintenant s'élancer dans l'univers physique; il va le parcourir, l'embrasser, le conno?tre: mais auparavant il perfectionne l'instrument de la géométrie, dont il a besoin. C'est ici une des parties les plus solides de la gloire de Descartes; c'est ici qu'il a tracé une route qui sera éternellement marquée dans l'histoire de l'esprit humain. L'algèbre étoit créée depuis longtemps. Cette géométrie métaphysique, qui exprime tous les rapports par des signes universels, qui facilite le calcul en le généralisant, opère sur les quantités inconnues comme si elles étoient connues, accélère la marche et augmente l'étendue de l'esprit en substituant un signe abrégé à des combinaisons nombreuses; cette science, inventée par les Arabes, ou du moins transportée par eux en Espagne, cultivée par les Italiens, avoit été agrandie et perfectionnée par un Fran?ais: mais, malgré les découvertes importantes de l'illustre Viète, malgré un pas ou deux qu'on avoit faits après lui en Angleterre, il restoit encore beaucoup à découvrir. Tel étoit le sort de Descartes, qu'il ne pouvoit approcher d'une science sans qu'aussit?t elle ne pr?t une face nouvelle. D'abord il travaille sur les méthodes de l'analyse pure: pour soulager l'imagination, il diminue le nombre des signes; il représente par des chiffres les puissances des quantités, et simplifie, pour ainsi dire, le mécanisme algébrique. Il s'élève ensuite plus haut: il trouve sa fameuse méthode des indéterminées, artifice plein d'adresse, où l'art, conduit par le génie, surprend la vérité en paraissant s'éloigner d'elle; il apprend à conno?tre le nombre et la nature des racines dans chaque équation par la combinaison successive des signes; règle aussi utile que simple, que la jalousie et l'ignorance ont attaquée, que la rivalité nationale, a disputée à Descartes, et qui n'a été démontrée que depuis quelques années[A]. C'est ainsi que les grands hommes découvrent, comme par inspiration, des vérités que les hommes ordinaires n'entendent quelquefois qu'au bout de cent ans de pratique et d'étude; et celui qui démontre ces vérités après eux acquiert encore une gloire immortelle. L'algèbre ainsi perfectionnée, il restoit un pas plus difficile à faire. La méthode d'Apollonius et d'Archimède, qui fut celle de tous les anciens géomètres, exacte et rigoureuse pour les démonstrations, étoit peu utile pour les découvertes. Semblable à ces machines qui dépensent une quantité prodigieuse de forces pour peu de mouvement, elle consumoit l'esprit dans un détail d'opérations trop compliquées, et le tra?noit lentement d'une vérité à l'autre. Il falloit une méthode plus rapide; il falloit un instrument qui élevat le géomètre à une hauteur d'où il p?t dominer sur toutes ses opérations, et, sans fatiguer sa vue, voir d'un coup d'oeil des espaces immenses se resserrer comme en un point: cet instrument, c'est Descartes qui l'a créé; c'est l'application de l'algèbre à la géométrie. Il commen?a donc par traduire les lignes, les surfaces et les solides en caractères algébriques; mais ce qui étoit l'effort du génie, c'étoit, après la résolution du problème, de traduire de nouveau les caractères algébriques en figures. Je n'entreprendrai point de détailler les admirables découvertes sur lesquelles est fondée cette analyse créée par Descartes. Ces vérités abstraites et pures, faites pour être mesurées par le compas, échappent au pinceau de l'éloquence; et j'affoiblirois l'éloge d'un grand homme en cherchant à peindre ce qui ne doit être que calculé. Contentons-nous de remarquer ici que, par son analyse, Descartes fit faire plus de progrès à la géométrie qu'elle n'en avoit fait depuis la création du monde. Il abrégea les travaux, il multiplia les forces, il donna une nouvelle marche à l'esprit humain. C'est l'analyse qui a été l'instrument de toutes les grandes découvertes des modernes; c'est l'analyse qui, dans les mains des Leibnitz, des Newton et des Bernoulli, a produit cette géométrie nouvelle et sublime qui soumet l'infini au calcul: voilà l'ouvrage de Descartes. Quel est donc cet homme extraordinaire qui a laissé si loin de lui tous les siècles passés, qui a ouvert de nouvelles routes aux siècles à venir, et qui dans le sien avoit à peine trois hommes qui fussent en état de l'entendre? Il est vrai qu'il avoit répandu sur toute sa géométrie une certaine obscurité: soit qu'accoutumé à franchir d'un saut des intervalles immenses, il ne s'aper??t pas seulement de toutes les idées intermédiaires qu'il supprimoit, et qui sont des points d'appui nécessaires à la foiblesse; soit que son dessein f?t de secouer l'esprit humain, et de l'accoutumer aux grands efforts; soit enfin que, tourmenté par des rivaux jaloux et foibles, il voul?t une fois les accabler de son génie, et les épouvanter de toute la distance qui étoit entre eux et lui[16].
[Note A: Voyez les Mémoires de l'Académie des sciences, année 1741.]
Mais ce qui prouve le mieux toute l'étendue de l'esprit de Descartes, c'est qu'il est le premier qui ait
Continue reading on your phone by scaning this QR Code

 / 148
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.