Placed where they are, they look like masses fallen from the great stellar arch. They are full of nebul? and star-clusters, and show striking evidences of spiral movement.
Star-swarms, which are also characteristic features of the Galaxy, differ from star-clouds very much in the way that their name would imply -- i.e., their component stars are so arranged, even when they are countless in number, that the idea of an exceedingly numerous assemblage rather than that of a cloud is impressed on the observer's mind. In a star-swarm the separate members are distinguishable because they are either larger or nearer than the stars composing a ``cloud.'' A splendid example of a true star-swarm is furnished by Chi Persei, in that part of the Milky Way which runs between the constellations Perseus and Cassiopeia. This swarm is much coarser than many others, and can be seen by the naked eye. In a small telescope it appears double, as if the suns composing it had divided into two parties which keep on their way side by side, with some commingling of their members where the skirts of the two companies come in contact.
Smaller than either star-clouds or star-swarms, and differing from both in their organization, are star-clusters. These, unlike the others, are found outside as well as inside the Milky Way, although they are more numerous inside its boundaries than elsewhere. The term star-cluster is sometimes applied, though improperly, to assemblages which are rather groups, such, for instance, as the Pleiades. In their most characteristic aspect star-clusters are of a globular shape -- globes of suns! A famous example of a globular star-cluster, but one not included in the Milky Way, is the ``Great Cluster in Hercules.'' This is barely visible to the naked eye, but a small telescope shows its character, and in a large one it presents a marvelous spectacle. Photographs of such clusters are, perhaps, less effective than those of star-clouds, because the central condensation of stars in them is so great that their light becomes blended in an indistinguishable blur. The beautiful effect of the incessant play of infinitesimal rays over the apparently compact surface of the cluster, as if it were a globe of the finest frosted silver shining in an electric beam, is also lost in a photograph. Still, even to the eye looking directly at the cluster through a powerful telescope, the central part of the wonderful congregation seems almost a solid mass in which the stars are packed like the ice crystals in a snowball.
The same question rises to the lips of every observer: How can they possibly have been brought into such a situation? The marvel does not grow less when we know that, instead of being closely compacted, the stars of the cluster are probably separated by millions of miles; for we know that their distances apart are slight as compared with their remoteness from the Earth. Sir William Herschel estimated their number to be about fourteen thousand, but in fact they are uncountable. If we could view them from a point just within the edge of the assemblage, they would offer the appearance of a hollow hemisphere emblazoned with stars of astonishing brilliancy; the near-by ones unparalleled in splendor by any celestial object known to us, while the more distant ones would resemble ordinary stars. An inhabitant of the cluster would not know, except by a process of ratiocination, that he was dwelling in a globular assemblage of suns; only from a point far outside would their spherical arrangement become evident to the eye. Imagine fourteen-thousand fire-balloons with an approach to regularity in a spherical space -- say, ten miles in diameter; there would be an average of less than thirty in every cubic mile, and it would be necessary to go to a considerable distance in order to see them as a globular aggregation; yet from a point sufficiently far away they would blend into a glowing ball.
Photographs show even better than the best telescopic views that the great cluster is surrounded with a multitude of dispersed stars, suggestively arrayed in more or less curving lines, which radiate from the principle mass, with which their connection is manifest. These stars, situated outside the central sphere, look somewhat like vagrant bees buzzing round a dense swarm where the queen bee is sitting. Yet while there is so much to suggest the operation of central forces, bringing and keeping the members of the cluster together, the attentive observer is also impressed with the idea that the whole wonderful phenomenon may be the result of explosion. As soon as this thought seizes the mind, confirmation of it seems to be found in the appearance of the outlying stars, which could be as readily explained by the supposition that they have been blown apart as
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.