Coral and Coral Reefs | Page 4

Thomas Henry Huxley
which these coral creatures live that they get the lime which is needed for the forming of their hard skeleton.
But now what manner of creatures are these which form these hard skeletons? I dare say that in these days of keeping aquaria, of locomotion to the sea-side, most of those whom I am addressing may have seen one of those creatures which used to be known as the "sea anemone," receiving that name on account of its general resemblance, in a rough sort of way, to the flower which is known as the "anemone"; but being a thing which lives in the sea, it was qualified as the "sea anemone." Well, then, you must suppose a body shaped like a short cylinder, the top cut off, and in the top a hole rather oval than round. All round this aperture, which is the mouth, imagine that there are placed a number of feelers forming a circle. The cavity of the mouth leads into a sort of stomach, which is very unlike those of the higher animals, in the circumstance that it opens at the lower end into a cavity of the body, and all the digested matter, converted into nourishment, is thus distributed through the rest of the body. That is the general structure of one of these sea anemones. If you touch it it contracts immediately into a heap. It looks at first quite like a flower in the sea, but if you touch it you find that it exhibits all the peculiarities of a living animal; and if anything which can serve as its prey comes near its tentacles, it closes them round it and sucks the material into its stomach and there digests it and turns it to the account of its own body.
These creatures are very voracious, and not at all particular what they seize; and sometimes it may be that they lay hold of a shellfish which is far too big to be packed into that interior cavity, and, of course, in any ordinary animal a proceeding of this kind would give rise to a very severe fit of indigestion. But this is by no means the case in the sea anemone, because when digestive difficulties of this kind arise he gets out of them by splitting himself in two; and then each half builds itself up into a fresh creature, and you have two polypes where there was previously one, and the bone which stuck in the way lying between them! Not only can these creatures multiply in this fashion, but they can multiply by buds. A bud will grow out of the side of the body (I am not speaking of the common sea anemone, but of allied creatures) just like the bud of a plant, and that will fashion itself into a creature just like the parent. There are some of them in which these buds remain connected together, and you will soon see what would be the result of that. If I make a bud grow out here, and another on the opposite side, and each fashions itself into a new polype, the practical effect will be that before long you will see a single polype converted into a sort of tree or bush of polypes. And these will all remain associated together, like a kind of co-operative store, which is a thing I believe you understand very well here,--each mouth will help to feed the body and each part of the body help to support the multifarious mouths. I think that is as good an example of a zoological co-operative store as you can well have. Such are these wonderful creatures. But they are capable not only of multiplying in this way, but in other ways, by having a more ordinary and regular kind of offspring. Little eggs are hatched and the young are passed out by the way of the mouth, and they go swimming about as little oval bodies covered with a very curious kind of hairlike processes. Each of these processes is capable of striking water like an oar; and the consequence is that the young creature is propelled through the water. So that you have the young polype floating about in this fashion, covered by its 'vibratile cilia', as these long filaments, which are capable of vibration are termed. And thus, although the polype itself may be a fixed creature unable to move about, it is able to spread its offspring over great areas. For these creatures not only propel themselves, but while swimming about in the sea for many hours, or perhaps days, it will be obvious that they must be carried hither and thither by the currents of the sea, which not unfrequently move at the rate of one or two miles an hour.
Continue reading on your phone by scaning this QR Code

 / 12
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.