Checking the Waste | Page 8

Mary Huston Gregory
than fifty years without fertilizing, it is found that about one-third of the phosphorus has been taken out of the soil, which would mean that in one hundred and fifty years, or a hundred years from now, the soil would be incapable of producing any living thing, and long before that time the crops would not pay for the labor of producing them. Almost every acre of land that has been farmed for ten years without fertilization is deficient in phosphorus, that is, so much has been used that the soil can no longer produce at its former rate.
It may be asked, if this be true, why the soil of America, which before it was cultivated had borne rich forests and fields of waving grass, has not become exhausted long ago. We must remember that nature always adjusts itself; that, in the wild state, all plants decay where they grow, and the same elements are returned again to the soil. But when the entire product of vast areas is removed year after year, the soil has nothing except the slow rock-decay with which to renew itself.
In tropical regions it is not necessary to feed domestic animals at any season of the year, but in those countries where the natural food can be found only during a part of the year, the need of artificial feeding is seen at once, and it becomes a part of the regular expense of farming.
It would be considered the height of folly for a man to allow his valuable animals to starve to death because of the expense of feeding them, but few people recognize the fact, which is also true, that it is equally bad business policy to allow the valuable crops of wheat, oats, and corn to starve for want of plant food.
The phosphates (that is, phosphorus) are the only large items of expense, and in a large measure this may be lessened by raising live stock, for which high prices can be obtained either as meat or dairy products, and returning the manure, which contains a large amount of phosphate, to the soil. If all the waste animal products could be returned to the land, Professor Van Hise says, three-fourths of the phosphorus would be replaced. All animal products are rich in phosphates. The packing houses manufacture large quantities from the bones and blood of animals.
The garbage of cities, when reduced to powder, yields large returns in phosphorus. It is said that if the sewage of cities, which in this country is often turned into rivers and streams, polluting them and causing disease, was reduced to commercial fertilizer, it would supply the equivalent of from six to nine pounds of rock phosphate per year for every acre of cultivated land in the United States. And this valuable product is now totally lost, and worse than lost, since it menaces the life and health of great numbers of our people.
There still remain to be considered the rock phosphates, the form in which phosphorus is found in separate deposits. The only large deposits that have been used are in Florida, South Carolina, and Tennessee, and from them about two and a quarter million tons were mined in 1907. Unfortunately, however, there is no law that prevents its export from this country, and almost half of this found its way to Europe, where it is eagerly sought at high prices.
Within a short time valuable phosphate beds, more extensive than any before known to exist in this country, have been discovered in Utah, Wyoming, and Idaho. Professor Van Hise, who is one of the highest authorities on the subject, says of these deposits that with the exception of our coal and iron lands, they are our most precious mineral possession; that every ounce should be saved for the time which is coming when the population will have outgrown the capacity of the land, and means of increasing its fertility in order to prevent famine will be sought from every possible source.
The other great waste of the soil is by erosion, or the wearing away of the soil by stream-flow. We can all see this in a small way by wandering along the shore of any swift-running stream and noticing how the banks are worn away, and what deep gullies and ravines are cut into them by the water running down from the fields above. Another way in which we can observe the effect of this waste is by noticing the muddy yellow color of streams during floods and after heavy rains, and comparing it with the clear blue of the same stream at ordinary times.
When we realize that this muddy color always means that the water is filled with soil, all that it will hold in solution, that it is carrying away the top soil, which
Continue reading on your phone by scaning this QR Code

 / 92
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.