pallets on the tangents. Theoretically there is no difficulty, but in practice we find there is.
Equidistant vs. Circular. At this stage we are able to weigh the circular against the equidistant pallet. In beginning this essay we had to explain the difference between them, so the reader could follow our discussion, and not until now, are we able to sum up our conclusions.
The reader will have noticed that for such an important action as the lift, which supplies power to the balance, the circular pallet is favored from every point of view. This is a very strong point in its favor. On the other hand, the unlocking resistance being less, and as nearly alike as possible on both pallets in the equidistant, it is a question if the total vibration of the balance will be greater with the one than the other, although it will receive the impulse under better conditions from the circular pallet; but it expends more force in unlocking it. Escapement friction plays an important role in the position and isochronal adjustments; the greater the friction encountered the slower the vibration of the balance. The friction should be constant. In unlocking, the equidistant comes nearer to fulfilling this condition, while during the lift it is more nearly so in the circular. The friction in unlocking, from a timing standpoint, overshadows that of the impulse, and the tooth can be a little wider in the equidistant than the circular escapement with the pallet properly planted. Therefore for the finest watches the equidistant escapement is well adapted, but for anything less than that the circular should be our choice.
The Fork and Roller Action. While the lifting action of the lever escapement corresponds to that of the cylinder, the fork and roller action corresponds to the impulse action in the chronometer and duplex escapements.
Our experience leads us to believe that the action now under consideration is but imperfectly understood by many workmen. It is a complicated action, and when out of order is the cause of many annoying stoppages, often characterized by the watch starting when taken from the pocket.
The action is very important and is generally divided into impulse and safety action, although we think we ought to divide it into three, namely, by adding that of the unlocking action. We will first of all consider the impulse and unlocking actions, because we cannot intelligently consider the one without the other, as the ruby pin and the slot in the fork are utilized in each. The ruby pin, or strictly speaking, the "impulse radius," is a lever arm, whose length is measured from the center of the balance staff to the face of the ruby pin, and is used, firstly, as a power or transmitting lever on the acting or geometrical length of the fork (i.?e., from the pallet center to the beginning of the horn), and which at the moment is a resistance lever, to be utilized in unlocking the pallets. After the pallets are unlocked the conditions are reversed, and we now find the lever fork, through the pallets, transmitting power to the balance by means of the impulse radius. In the first part of the action we have a short lever engaging a longer one, which is an advantage. See Fig.?14, where we have purposely somewhat exaggerated the conditions. A'X represents the impulse radius at present under discussion, and AW the acting length of the fork. It will be seen that the shorter the impulse radius, or in other words, the closer the ruby pin is to the balance staff and the longer the fork, the easier will the unlocking of the pallets be performed, but this entails a great impulse angle, for the law applicable to the case is, that the angles are in the inverse ratio to the radii. In other words, the shorter the radius, the greater is the angle, and the smaller the angle the greater is the radius. We know, though, that we must have as small an impulse angle as possible in order that the balance should be highly detached. Here is one point in favor of a short impulse radius, and one against it. Now, let us turn to the impulse action. Here we have the long lever AW acting on a short one, A'X, which is a disadvantage. Here, then, we ought to try and have a short lever acting on a long one, which would point to a short fork and a great impulse radius. Suppose AP, Fig.?14, is the length of fork, and A'P is the impulse radius; here, then, we favor the impulse, and it is directly in accordance with the theory of the free vibration of the balance, for, as before stated, the longer the radius the smaller the angle. The action at P
Continue reading on your phone by scaning this QR Code
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the
Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.