An Analysis of the Lever Escapement | Page 7

H.R. Playtner
disengaging pallet it moves down, and in a direction opposite to the pallets, and the heel of the tooth moves with greater velocity than the locking edge; also in the case of the engaging pallet, the locking edge moves with greater velocity than the discharging edge; in the disengaging pallet the opposite is the case, as the discharging edge moves with greater velocity than the locking. These points involve factors which must be considered, and the drafting of a correct action is of paramount importance; we therefore show the lift as it is accomplished in four different stages in a good action. Fig.?9 illustrates the engaging, and Fig.?10 the disengaging pallet; by comparing the figures it will be noticed that the lift takes place on the point of the tooth similar to the English, until the discharging edge of the pallet has been passed, when the heel gradually comes into play on the engaging, but more quickly on the disengaging pallet.
We will also notice that during the first part of the lift the tooth moves faster along the engaging lifting plane than on the disengaging; on pallets 2 and 3 this difference is quite large; towards the latter part of the lift the action becomes quicker on the disengaging pallet and slower on the engaging.
To obviate this difficulty some fine watches, notably those of A. Lange & Sons, have convex lifting planes on the engaging and concave on the disengaging pallets; the lifting planes on the teeth are also curved. See Fig.?11. This is decidedly an ingenious arrangement, and is in strict accordance with scientific investigation. We should see many fine watches made with such escapements if the means for producing them could fully satisfy the requirements of the scientific principles involved.
[Illustration: Fig.?9.]
The distribution of the lift on tooth and pallet is a very important matter; the lifting angle on the tooth must be less in proportion to its width than it is on the pallet. For the sake of making it perfectly plain, we illustrate what should not be made; if we have 10?° for width of tooth and pallet, and take half of it for a tooth, and the other half for the pallet, making each of them 5?° in width, and suppose we have a lifting of 8?° to distribute between them, by allowing 4?° on each, the lift would take place as shown in Fig.?12, which is a very unfavorable action. The edge of the engaging pallet scrapes on the lifting plane of the tooth, yet it is astonishing to find some otherwise very fine watches being manufactured right along which contain this fault; such watches can be stopped with the ruby pin in the fork and the engaging pallet in action, nor would they start when run down as soon as the crown is touched, no matter how well they were finished and fitted.
[Illustration: Fig.?10.]
The lever lengths of the club tooth are variable, while with the ratchet they are constant, which is in its favor; in the latter it would always be as SB, Fig.?13. This is a shorter lever than QB, consequently more powerful, although the greater velocity is at Q, which only comes into action after the inertia of wheel and pallets has been overcome, and when the greatest momentum during contact is reached. SB is the primitive radius of the club tooth wheel, but both primitive and real radius of the ratchet wheel. The distance of centers of wheel and pallet will be alike in both cases; also the lockings will be the same distance apart on both pallets; therefore, when horologists, even if they have worldwide reputations, claim that the club tooth has an advantage over the ratchet because it begins the lift with a shorter lever than the latter, it does not make it so. We are treating the subject from a purely horological standpoint, and neither patriotism or prejudice has anything to do with it. We wish to sift the matter thoroughly and arrive at a just conception of the merits and defects of each form of escapement, and show reasons for our conclusions.
[Illustration: Fig.?11.]
[Illustration: Fig.?12.]
[Illustration: Fig.?13.]
Anyone who has closely followed our deductions must see that in so far as the wheel is concerned the ratchet or English wheel has several points in its favor. Such a wheel is inseparable from a wide pallet; but we have seen that a narrower pallet is advisable; also as little drop and lock as possible; clearly, we must effect a compromise. In other words, so far the balance of our reasoning is in favor of the club tooth escapement and to effect an intelligent division of angles for tooth, pallet and lift is one of the great questions which confronts the intelligent horologist.
Anyone who has ever taken the pains to draw pallet
Continue reading on your phone by scaning this QR Code

 / 25
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.