An Analysis of the Lever Escapement | Page 4

H.R. Playtner
throughout. We have purposely shown it of a width of 10°, which is the widest we can employ in a 15 tooth wheel, and shows the defects of this escapement more readily than if we had used a narrow pallet. A narrower pallet is advisable, as the difference in the discharging edges will be less, and the lifting arms would, therefore, not show so much difference in leverage.
[Illustration: Fig.?3.]
The circular pallet is sometimes appropriately called "the pallet with equal lifts," as the lever arms AMO and ANP, Fig.?3, are equal lengths. It will be noticed by examining the diagram, that the pallets are bisected by the 30° lines EB and FB, one-half their width being placed on each side of these lines. In this pallet we have two locking circles, MP for the engaging pallet, and NO for the disengaging pallet. The weak points in this escapement are that the unlocking resistance is greater on the engaging than on the disengaging pallet, and that neither of them lock on the tangents AC and AD, at the points of intersection with EB and FB. The narrower the circular pallet is made, the nearer to the tangent will the unlocking be performed. In neither the equidistant or circular pallets can the unlocking resistance be exactly the same on each pallet, as in the engaging pallet the friction takes place before AB, the line of centers, which is more severe than when this line has been passed, as is the case with the disengaging pallet; this fact proportionately increases the existing defects of the circular over the equidistant pallet, and vice versa, but for the same reason, the lifting in the equidistant is proportionately accompanied by more friction than in the circular.
Both equidistant and circular pallets have their adherents; the finest Swiss, French and German watches are made with equidistant escapements, while the majority of English and American watches contain the circular. In our opinion the English are wise in adhering to the circular form. We think a ratchet wheel should not be employed with equidistant pallets. By examining Fig.?2, we see an English pallet of this form. We have shown its defects in such a wide pallet as the English (as we have before stated), because they are more readily perceived; also, on account of the shape of the teeth, there is danger of the discharging edge, P, dipping so deep into the wheel, as to make considerable drop necessary, or the pallets would touch on the backs of the teeth. In the case of the club tooth, the latter is hollowed out, therefore, less drop is required. We have noticed that theoretically, it is advantageous to make the pallets narrower than the English, both for the equidistant and circular escapements. There is an escapement, Fig.?4, which is just the opposite to the English. The entire lift is performed by the wheel, while in the case of the ratchet wheel, the entire lifting angle is on the pallets; also, the pallets being as narrow as they can be made, consistent with strength, it has the good points of both the equidistant and circular pallets, as the unlocking can be performed on the tangent and the lifting arms are of equal length. The wheel, however, is so much heavier as to considerably increase the inertia; also, we have a metal surface of quite an extent sliding over a thin jewel. For practical reasons, therefore, it has been slightly altered in form and is only used in cheap work, being easily made.
[Illustration: Fig.?4.]
We will now consider the drop, which is a clear loss of power, and, if excessive, is the cause of much irregularity. It should be as small as possible consistent with perfect freedom of action.
In so far as angular measurements are concerned, no hard and fast rule can be applied to it, the larger the escape wheel the smaller should be the angle allowed for drop. Authorities on the subject allow 1?° drop for the club and 2° for the ratchet tooth. It is a fact that escape wheels are not cut perfectly true; the teeth are apt to bend slightly from the action of the cutters. The truest wheel can be made of steel, as each tooth can be successively ground after being hardened and tempered. Such a wheel would require less drop than one of any other metal. Supposing we have a wheel with a primitive diameter of 7.5?mm., what is the amount of drop, allowing 1?° by angular measurement? 7.5?×?3.1416?÷?360?×?1.5?=?.0983?mm., which is sufficient; a hair could get between the pallet and tooth, and would not stop the watch. Even after allowing for imperfectly divided teeth, we require no greater freedom even if the wheel is larger. Now suppose we take a wheel with a primitive diameter of 8.5?mm. and
Continue reading on your phone by scaning this QR Code

 / 25
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.