A Project for Flying | Page 8

Robert Hardley
fixed centre round which it was thus made to revolve, without the necessity of confining it to the one level.
The rate of motion which the Balloon thus equipped is capable of accomplishing varies according to the circumstances of its propulsion. When the Archimedean Screw precedes, the velocity is less than when it is made to follow, owing to the reaction of the air in the former instance against the car, the under surface of the balloon, and other obstacles, by which its progress is retarded. Again, when the cord upon which it travels is most tense and free from vibration, the rate is found to be considerably accelerated, compared with what it is when the contrary conditions prevail. But chiefly is its speed affected by the proper ballasting of the machine itself, upon which, depends the friction it encounters from the cord on which it travels. Under ordinary circumstances it proceeds at a rate of about four miles an hour, but when the conditions alluded to have been most favourable, it has accomplished a velocity of not less than five; and there is no doubt that were it altogether free from restraint, as it would be in the open air, with a hand to guide it, its progress would be upwards of six miles an hour.
Having now, I trust, sufficiently explained the principles exemplified in the model here described, it may be expected that I should add a few words regarding their reduction into practice upon a larger scale and in the open air, with such difficulties to contend with as may be expected to be encountered in the prosecution of such a design. In the first place, however, it will be necessary to disabuse the public mind of some very prevailing misconceptions with respect to the conditions of a Balloon exposed to the action of the winds, pursuing its course under the exercise of an inherent propulsive power. These misconceptions, which, be it observed, are more or less equally participated in by the scientific as by the ignorant, when devoid of that practical experience which is the basis of all aeronautical proficiency, are of a very vague and general character, and consequently not very easy accurately to define. In order, therefore, to make sure of meeting all the objections and removing all the doubts to which they are calculated to give rise, it will be advisable, even at the risk of a little tediousness, to separate them into distinct questions and treat them accordingly.
One of the most specious of these misconceptions regards the effects of the resistance of the atmosphere upon the figure of the Balloon when rapidly propelled through the air, whereby it is presumed its opposing front will be driven in, and more or less incapacitated from performing the part assigned to it; namely, to cleave its way with the reduced resistance due to its proper form. To obviate, this imagined result, various remedies have been proposed--such as, to construct that part of the machine of more solid materials than the rest, or else (as suggested by one of the most scientific and ingenious of those who have devoted their attention to the theory of aerial navigation), to subject the gaseous contents of the Balloon to such a degree of artificial condensation by compression, as shall supply from within a force equal to that from without; adopting, of course, materials of a stronger texture than those at present in use, for the construction of the balloon. Now the contingency against which it is here sought to provide, and which I grant is a very reasonable one to anticipate, has nevertheless no real existence in practice; at least in such a degree as to render it necessary to have recourse to any particular expedient for its prevention. Taking it for granted that the hypothesis in which it is involved is founded upon a presumed analogy with a Balloon exposed to the action of the wind while in a state of attachment to the earth, I would first observe that the cases in question, however apparently analogous, are in reality essentially dissimilar. In the one case (that where the Balloon is supposed to be attached to the earth) all the motion, and consequently all the momentum, is in the air; in the other case (where the Balloon is supposed to be progressive), it is in the constituent particles of the machine itself and of its gaseous contents. And this momentum, which is ever proportioned to the rate of its motion, and, consequently, to the amount of resistance it experiences, is amply sufficient to secure the preservation of the form of its opposing front, however partially distended, and whatever the velocity with which it might happen to be endowed. Independently, however, of this corrective principle, another, equally efficacious is afforded
Continue reading on your phone by scaning this QR Code

 / 16
Tip: The current page has been bookmarked automatically. If you wish to continue reading later, just open the Dertz Homepage, and click on the 'continue reading' link at the bottom of the page.